• Title/Summary/Keyword: Bridge Monitoring Data

Search Result 359, Processing Time 0.03 seconds

Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms (효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로)

  • Heo, Gwang-Hee;Lee, Chin-Ok;Seo, Sang-Gu;Jeong, Yu-Seung;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.23-32
    • /
    • 2020
  • The compression sensing technology, CAFB, was developed to obtain the raw signal of the target structure by compressing it into a signal of the intended frequency range. At this point, for compression sensing, the CAFB can be optimized for various reference signals depending on the desired frequency range of the target structure. In addition, optimized CAFB should be able to efficiently compress the effective structural answers of the target structure even in sudden/dangerous conditions such as earthquakes. In this paper, the targeted frequency range for efficient structural integrity monitoring of relatively flexible structures was set below 10Hz, and the optimization method of CAFB for this purpose and the seismic response performance of CAFB in seismic conditions were evaluated experimentally. To this end, in this paper, CAFB was first optimized using Kobe seismic waveform, and embedded it in its own wireless IDAQ system. In addition, seismic response tests were conducted on two span bridges using Kobe seismic waveform. Finally, using an IDAQ system with built-in CAFB, the seismic response of the two-span bridge was wirelessly obtained, and the compression signal obtained was cross-referenced with the raw signal. From the results of the experiment, the compression signal showed excellent response performance and data compression effects in relation to the raw signal, and CAFB was able to effectively compress and sensitize the effective structural response of the structure even in seismic situations. Finally, in this paper, the optimization method of CAFB was presented to suit the intended frequency range (less than 10Hz), and CAFB proved to be an economical and efficient data compression sensing technology for instrumentation-monitoring of seismic conditions.

Analysis of Animal Usage of Eco-bridge and Ecoduct Using an Infrared CCTV at the Baekdudaegan Mountain Range, Korea (적외선 CCTV를 활용한 백두대간 육교형 생태통로와 터널형 생태통로의 동물이용현황 분석)

  • Cho, Hye-Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 2016
  • In order to prevent the fragmentation of animal habitat due to road construction, the most widely applied solution is building animal passes worldwide. In Korea, animal passes were introduced in the early 2000s, and through trial and error, the national guidelines for them and their design standards were published in 2010. These were criticized by politicians because of their relative inefficiency considering their high construction cost and their lack of animal usage. This study investigated the extent to which animals used the facilities. For this study, two types of animal passes, eco-bridges and ecoducts, were considered and the test sites were chosen from the Baekdu Mountains. The animal usage data was captured using infra-red CCTV cameras. The results showed that various types of animals used eco-bridges and ecoducts. Interestingly various types of birds were captured by cameras and endangered animals were also in them. The season, weather, and their surrounded vegetation also had effects on their usages. The infrared CCTV allowed detailed captures of animals but the electricity shortage was one disadvantage. During the last decades, a number of eco-bridges were constructed throughout the country and now we need to focus on their monitoring and maintenance for their successful efficiency and application.

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

Visualization of Structural Shape Information based on Octree using Terrestrial Laser Scanning (3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화)

  • Cha, Gichun;Lee, Donghwan;Park, Seunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.8-16
    • /
    • 2016
  • This study presents the visualization of shape information based on Octree using 3D laser scanning. The process of visualization was established to construct the Octree structure from the 3D scan data. The scan data was converted to a 2D surface through the mesh technique and the surface was then converted to a 3D object through the Raster/Vector transformation. The 3D object was transmitted to the Octree Root Node and The shape information was constructed by the recursive partitioning of the Octree Root Node. The test-bed was selected as the steel bridge structure in Sungkyunkwan University. The shape information based on Octree was condensed into 89.3%. In addition, the Octree compressibility was confirmed to compare the shape information of the office building, a computer science campus in Germany and a New College in USA. The basis is created by the visualization of shape information for double-deck tunnel and it will be expected to improve the efficiency of structural health monitoring and maintenance.

Study on the Long-term Changes in Water Quality and Benthic Ecology and Evaluation on Effect of the Barrage in Nakdong River Estuary (낙동강 하구 수질 및 저서 생태의 장기 변화와 하굿둑의 영향 평가)

  • Park, Sohyun;Lee, Jiyoung;Choi, Jae Ung;Heo, Nakwon;An, Soonmo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.58-67
    • /
    • 2016
  • This study was performed to investigate the long-term changes in water quality and benthic ecology around the Nakdong River Estuary. The effect of the estuarine barrage on the ecosystem was also evaluated. The water quality was interpreted using the field survey (2013 and 2014) and monitoring data (MOE, 1989~2013) and the macrobenthic-fauna was investigated through analysis of the field survey data (2014) and literatures review (1985~2013). The long-term variation of water quality of Nakdong River generally showed increased nutrient concentration with decreased discharge, while abrupt influence of the barrage construction was not observed. However, the nutrient and organic matter concentration inside the barrage distinctly was higher than the concentration outside the barrage because the mixing of fresh and seawater was limited by the barrage. Especially, in the period of low discharge during winter, the Chlorophyll-a concentration clearly increased more in the downstream inside the barrage, showing the barrage effect. In other words, stagnant effect caused by barrage construction had an effect on the water quality degradation in dry seasons. As for the benthic ecology inside barrage after barrage construction, molluscans and brackish-water crustaceans disappeared. Outside the barrage, benthic ecosystem has deteriorated and the small-sized organic indicative species like Prionospio membranacea, Pseudopolydora kempi, Sinocorophium sinensis became dominant due to several construction such as Myeong-Gi Bridge, Airport construction, industrial complex after the Nakdong barrage construction.

Ecological health assessment of Yangjaecheon and Yeouicheon using biotic index and water quality (생물지수와 수질을 이용한 양재천과 여의천의 생태건강성평가)

  • Jin Hyo Lee;Hyeon Han;Jun Yeon Lee;Young Seop Cha;Seog Ju Cho
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.172-186
    • /
    • 2022
  • Benthic macroinvertebrates are important ecological and environmental indicators as primary or secondary consumers, and therefore are widely used in the evaluation of aquatic environments. However, there are no comprehensive river ecosystem monitoring surveys that link the major physicochemical water quality items with benthic macroinvertebrates in urban streams. Therefore, this study investigated the distribution characteristics of benthic macroinvertebrates and physicochemical water quality items (17 items) in Yangjaecheon and Yeouicheon from 2019 to 2020. At the same time, by applying Spearman's rank correlation analysis and nonmetric multidimensional scaling (nMDS) analysis in the water quality data and biotic index, we tried to provide basic data for diagnosing the current status of river ecosystems in major urban rivers in Seoul. Based on the study results, a total of 39 species and 3,787 individuals were identified in Yangjaecheon, the water quality(based on BOD, TOC, and TP) of Yangjaecheon was higher than Grade Ib(good), and the BMI using benthic macroinvertebrates appeared as Grade C(normal) at all the sites. In Yeouicheon, a total of 51 species and 4,199 individuals were identified, the water quality(based on BOD, TOC, TP) was higher than Grade Ib(good) similar to Yangjaecheon, and the BMI of both Upstream and Saewon bridge was Grade B(good), while Yeoui bridge was Grade C(normal). Overall, analysis results for the distribution of benthic macroinvertebrates by a nonmetric multidimensional scaling method showed no significant difference between the two streams (p=0.1491). Also, significant environmental variables related to benthic macroinvertebrates distribution were determined as water temperature and DO. On the other hand, the results of the correlation analysis between biotic index and major water quality items confirmed that R1 and BMI could be used for on-site urban river water quality evaluation.

A Study on Development of Remote Crane Wire Rope Flaws Detection Systems (원격 크레인 와이어 로프 결함 탐지 시스템 개발에 관한 연구)

  • Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, the wire rope of crane is important component to container transfer. If it happens wire rope failures during the operation, it may lead to safety accident, economic loss by productivity decline and so on. To solve this problem, we developed remote wire rope fault detecting system, and this system is consisted of 3 parts that portable fault detecting part, signal processing part and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data. It is verified that the detecting system by de-noising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension fo wire ropes exchange period and could competitive power. Also, this system is possible to apply in several field such as elevator, lift and so on.

Developing National Science Assessment System:Scientific Knowledge Domain (국가 수준의 과학 지식 평가 체제 개발)

  • Kwon, Jae-Sool;Choi, Byung-Soon;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.601-615
    • /
    • 1998
  • Establishing and evaluating science education policies and revising and monitoring the effectiveness of science curriculum should be based upon the results of systematic and scientific research studies. Advanced nations have already been administering and developing national level science assessments for these purposes. The science assessments administered in Korea have been reported having many limitations and problems, and not succeeded in providing data for science education policy making and curriculum reform. The major purpose of the study is developing national level science knowledge assessment system in order to identify longitudinal trends of elementary and secondary school students science knowledge achievements. The research team consisted of science education experts and teachers from various school levels, decided the directions and major elements of national level science knowledge assessment with the consultation of educational evaluation experts. Item developing ability of the researchers was improved by seminars? and workshops on national assessment in advanced nations and developing skills of writing science items. Nearly 500 items were developed and revised. Pilot test was administered with 958 students at various school levels. 380 items were selected and tested with 8766 students, and the characteristics were analyzed in terms of item response theory. The target populations for national level science knowledge assessment are 5th-grade of elementary school, 2nd-grade of middle school, 1st and 2nd-grade of high school students. The proper period for the assessment is February every year. Multi-stage clustered sampling method is desirable and rotated forms are recommendable for the test format. Bridge items should be introduced to compare the results of multiple tests, and various grades. Anchor items should also be used for longitudinal interpretations of the results. The items for elementary school require low to medium abilities, for middle school and first grade of high school require medium to high abilities and for 2nd-grade of high school high abilities. The discrimination ability of the items developed is high.

  • PDF

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.