• Title/Summary/Keyword: Bridge Maintenance Cost

Search Result 170, Processing Time 0.025 seconds

Development of Regression Model to evaluate the indirect costs of Life-Cycle Costs (생애주기비용의 간접비용 산출을 위한 Regression Model의 개발)

  • 조효남;이종순;김충완;박경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.150-156
    • /
    • 2004
  • Though the concept of Life-Cycle Cost (LCC) itself is not new, its effectiveness for planning, design, rehabilitation and maintenance/management of civil infrastructures is becoming increasingly recognized. For the decision problems as in the case of the LCC of plant facilities, equipments, bridge decks, pavements, etc., the Life-Cycle Cost Analysis (LCCA) is relatively simple, and thus its practical implementation is rather straightforward. However, when it comes to major infrastructures such as bridge, tunnels, underground facilities, etc., the LCCA problem becomes extremely complex because lack of cost data associated with various direct and indirect losses, and the absence of uncertainty data available for the assessment as well. As a result, the LCC studies have been largely limited only to those relatively simple LCCA problems of planning or conceptual design for making decisions. Accordingly, in the recent years, the researchers have pursued extensive studies on the LCC effectiveness mostly related to LCC models and frameworks for civil infrastructures. Moreover, recently the demand on the practical application of LCC effective decisions in design and maintenance is rapidly growing unprecedently in civil engineering practice. Indirction cost is very important on LCC formulation. But that is very difficult and complicate the estimation every LCC. The objective of this paper is to suggest efficient regression model for the estimation of indirect cost approach to the practical application of LCC for the design and rehabilitation of civil. infrastructures considering traffic, traffic network, detour condition, and workzone condition. In this paper, it performed the sensitivity analysis and correlation analysis of parameter for development of regression model of inflection cost.

  • PDF

Preliminary Analysis on Artificial Intelligence-based Methodology for Selecting Repair and Rehabilitation Methods of Bridges (인공지능 기반의 교량 보수공법 선정 기술 개발을 위한 선행 분석)

  • Kim, Jonghyeob;Jung, In-Su;Yun, Won-Gun;Kim, Jung-Yeol;Park, In-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.861-872
    • /
    • 2021
  • An efficient cost management is important for the domestic social overhead capital(SOC) based on a long lifecycle after 30 years since completion. Maintenance in South Korea have had the restrictions of consistency and suitability of decision-making by the establishment of a budget plan based on the company estimate and repair and reinforcement methods determined by the inspection and diagnosis engineers' subjective determination for each facility. To resolve this issue, the Korea Institute of Civil Engineering and Building Technology is currently in development of a methodology to propose an optimum maintenance method according to the damage of components by artificial intelligence. This study has deduced the primary factors by analyzing information generated during bridge maintenance and management as a prior step for the development of technologies, and conducted a preliminary analysis to select the optimum artificial intelligence technology.

A Study on Optimum Reliability of P.S.C Box Girder Bridge (최적신뢰성에 의한 P.S.C Box Girder교의 연구)

  • Jung, Chul-Won;Yu, Han-Shin;Na, Ki-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.139-144
    • /
    • 1999
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabiliistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on P.S.C Box Girder Bridge system which could possibly replace optimum design based traditional provisions of the current code, based on the Neldel-Mead Method reliability theory.

  • PDF

Development of Real-time Bridge Inspection Application connected with Bridge Management System (교량관리시스템과 연계된 실시간 교량 현장조사 프로그램 개발)

  • Park, Kyung-Hoon;Sun, Jong-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7893-7901
    • /
    • 2015
  • It is important to the periodic collection and analysis of the maintenance and management information of bridges for a more safe and efficient management of the bridges. To enhance the reliability and ease of acquisition of the bridge inspection information that is the basis for a strategy for safe and economic management using the bridge management system (BMS), this study develops a smart phone application for bridge inspection and ensures the actual applicability of the application. The developed application that is linked with the BMS for life-cycle management of bridges is possible to real-time query, modify and transmit of the maintenance-related information, and the application is able to greatly relieve the time and cost for the bridge inspection through the automatic creation of site inspection reports. The proposed method using the application is directly or indirectly expected to be very high effects of value improvement, such as ease of use, improved accuracy, sustainability of information, and future utilization, compared to conventional inspection method.

An Experimental Study on the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bars (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부의 거동에 관한 실험적 연구)

  • Lee, Sang-Yoon;Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.453-463
    • /
    • 2012
  • Steel-concrete composite rigid-frame bridge is a type of integral bridge having advantages in bridge maintenance and structural efficiency from eliminating expansion joints and bridge supports, the main problems in bridge maintenance. The typical steel-concrete composite rigid-frame bridge has the girder-abutment connection where a part of its steel girder is embedded in abutment for integrity. However, the detail of typical girder-abutment connection is complex and increases the construction cost, especially when a part of steel girder is embedded. Recently, a new type of bridge was proposed to compensate for the disadvantages of complex details and cost increase. The compensation are expected to improve efficiency of construction by simplifying the construction detail of the girder-abutment connection. In this study, a static load test has been carried out to examine the behavior of the girder-abutment connection using real-scale specimens. The results of the test showed that the girder-abutment connection of proposed girder bridge has sufficient flexural capacity and rebars to control concrete crack should be placed on the top of abutment.

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

System-Level Maintenance Strategy for Steel Bridges based on Life-Cycle Analysis (생애주기분석을 통한 강교량 시스템수준의 유지관리 전략)

  • Park, Kyung Hoon;Lee, Sang Yoon;Kim, Jung Ho;Cho, Hyo Nam;Kong, Jung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.259-268
    • /
    • 2008
  • This paper proposes a method to establish an optical lifetime maintenance strategy for deteriorating bridges in consideration of life-cycle performance and cost. A program is developed based on the proposed method, which can generate optimum maintenance scenarios not only at the individual member level but also at the system level of the bridge. By applying the developed program is studied through the comparative analysis of maintenance strategies generated at each level. According to the results of comparison between maintenance strategies of the member-level analysis and system-level analysis. It is expected that the establishment of a maintenance strategy through the bridge system-level analysis considering target, members reflects practical and reasonable results.

A Dynamic Behavior Analysis of composite Few Plate Girder Railway Bridge under Variety of Track systems (소수주형 철도교의 궤도시스템 변화에 따른 동적거동 분석)

  • Lee Hong-Joon;Choi Jung-Youl;Eom Mac;Park Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1171-1176
    • /
    • 2005
  • The latest technical development of steel plate girder railway bridge are developing in ways to maximize its durability of materials in use of high strength steel and efficiency of maintenance and management by the introduction of simplified and standardization ideas. In addition to this, it is also expected to reduce the cost of bridge construction and to simplify the process of bridge manufacturing. Referring to this, composite few plate girder railway bridge is highly recommendable that is very economical with the fine exterior. In this paper, it will analyse the variation of dynamic behavior of existing composite few plate girder railway bridge with ballast caused by modified Slab Track through interpretation of limited enzyme in order to obtain the existing data for improvement of Slab Track system from Ballast Track system. Consequently, it can help maximize economic efficiency and structural capability. As a results, although the natural frequency by modified Slab Track are decreased, it is hardly influencing on the safety of railway bridges. It is also evident in the case of slab deck with a reduced scale in comparison with Ballast Track. Therefore, it is expected to reduce the cost of a railway bridge plan. And, it can expect the synergistic effect of the ensure long term durability of bridge caused by decreased stresses of bottom flange due to reduced dead load. As a result, the analytical study are carried out to investigate the composite few plate girder railway bridge could be the optimal design method for the dynamic safety of a girder section.

  • PDF

Reliability Index Optimization for Pier Type Quay Walls Using Life Cycle Cost (생애주기비용을 이용한 잔교식 안벽의 신뢰도지수 최적화)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.422-428
    • /
    • 2011
  • Optimal reliability indices were found by optimizing life cycle cost(LCC) of pier type quay walls. Failure probability of pier and shore bridge were calculated by response surface method. Then, they were used to obtain recovery cost after damage. Costs for initial construction and maintenance were also considered in finding optimal reliability indices. Target reliability indices which may be used in reliability based design were suggested by numerical examples under seismic load and ship load.

A study on the Life Cycle Profiles(LCP) for RC Slab Bridge (철근콘크리트 슬래브교의 노후화 예측모델에 관한 연구)

  • Ahn, Young-Ki;Lee, Chae-Gue;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.251-262
    • /
    • 2003
  • LCP(Life Cycle Profiles) of bridge structures are indispensable for the LCC(Life Cycle Cost) evaluations of bridge system. The bridge under considerations may be newly-designed one or one in service. Thus, a systematic study of LCP is essential for both reliable LCC evaluation and strategic bridge management. LCP is mainly influenced by the structural environment in nature. However, in Korea, LCC evaluation has been performed with the LCP of foreign research results or only with the pieces of professional engineers' opinion. Therefore, to alleviate the drawbacks of foreign LCP and to enhance the reliability of current LCP, LCP should be established using the available data in bridge management system(BMS). In this study, LCP along with a subset of the BMS data was investigated and several mathematical expressions were proposed and evaluated. The condition ratings of a bridge were trasformed into the numerical indices through fuzzy logics with real field data. From the numerical results, it is concluded that the mathematical LCP model of $y=\sqrt{y^2_0-at}$ is shown to be the fittest one (R=0.815) to express the condition rating varied with the age. This has been drawn from the case study of slab bridges under the similar conditions.