• Title/Summary/Keyword: Bridge Column

Search Result 236, Processing Time 0.022 seconds

Earthquake risk assessment of seismically isolated extradosed bridges with lead rubber bearings

  • Kim, Dookie;Yi, Jin-Hak;Seo, Hyeong-Yeol;Chang, Chunho
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.689-707
    • /
    • 2008
  • This study presents a method to evaluate the seismic risk of an extradosed bridge with seismic isolators of lead rubber bearings (LRBs), and also to show the effectiveness of the LRB isolators on the extradosed bridge, which is one of the relatively flexible and lightly damped structures in terms of seismic risk. Initially, the seismic vulnerability of a structure is evaluated, and then the seismic hazard of a specific site is rated using an earthquake data set and seismic hazard maps in Korea. Then, the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic deformation of bridge columns and the nonlinear characteristics of soil foundation. To describe the nonlinear behaviour of a column, the ductility demand is adopted, and the moment-curvature relation of a column is assumed to be bilinear hysteretic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And the seismic hazard at a specific site is estimated using the available seismic hazard maps. The results show that in seismically-isolated extradosed bridges under earthquakes, the effectiveness of the isolators is much more noticeable in the columns than the cables and girders.

Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.151-158
    • /
    • 2002
  • In the present design concept, the nonlinear behaviour of bridges is at lowed under large earthquake. The nonlinearity is, however, localized like pier, bearing, etc. Especially, pier columns are most important members for seismic performance. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element is used for modelling pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continous bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is analyzed. Second, Linear and nonlinear dynamic analysises using simplified model for longitudinal direction are carried out and the results are analyzed.

  • PDF

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

3차원 좌표 측정기 구조 해석

  • 양종화;박준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.220-225
    • /
    • 2001
  • High rigidity of structure is required to obtain its accuracy and performance in a coordinates measuring machine(CMM). Modeling of bridge column of a CMM is introduced and the unit-load method by the principle of virtual work is suggested to analyze deflections of bridge column which is designed for high rigidity. Also design of porous air bearings of each moving axis is introduced to satisfy the loading conditions.

Capacity Detailing of Members to Ensure Elastic Behavior (보-기등 접합부의 탄성거동을 위한 내진역량상세)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.119-126
    • /
    • 1999
  • The objective of this task is to develop seismic design and capacity detailing recommendations for all portions of bridge piers that do not participate as primary energy dissipation elements. particular emphasis is given to the design requirements of cap beams and their connections of multi-column bridge pier bents. By prestressing the joints it is possible to ensure the joints remain elastic. Prestress enhances the bond and anchorage of the longitudinal column bars and also minimizes or avoids diagonal shear cracking in the joints.

  • PDF

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

A Comparison Study of Model Reduction Method with Direct Impact Analysis of Truck-column Collision (모델축소법을 이용한 교각-차량 충돌변위 예측 및 직접충돌해석법과의 비교연구)

  • Lee, Jaeha;Kim, Kyeongjin;Jeong, Yoseok;Kim, Wooseok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.675-682
    • /
    • 2015
  • Current design codes such as AASHTO LRFD or Korean Highway Bridge Design Code recommend of using static force for designing bridge column against vehicle collisions. However, there was an accident that the bridge was collapsed shortly after vehicle impact on bridge pier in Nebraska(near Big Spring, 2003). It was found that the second largest cause of bridge collapse is collision after hydraulic causes. It can be thought that the possibility of truck-bridge collision are getting increasing as the size of truck increases and traffic condition are becoming improved. However, dynamic behavior under the impact loading seldom considered in bridge design procedure due to computational cost and time. In this study, in order to reduce the computational cost for dynamic impact analysis, model reduction method was developed. Obtained results of residual displacement were compared with the results of direct impact simulations.

Application Study of High-Strength Steel(HSA800) for the Special Structure (특수구조 대상으로 고강도 강재(HSA800)의 현장 적용성 연구)

  • Kim, In-Ho;Lee, Hee-Su;Park, Sung-Yong;Kim, Jong-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 2014
  • The purpose of this study is to increase applicability of high strength steel, HSA800 to the structure. Selected study of structure is to consider high strength steel, and following parts, 1) Tensile member with no consider of buckling, 2) Truss existing both tension and compression members with small slenderness ratio. This studied structure is included tension column hang on to the upper bridge truss. The structure element quantity with apply HSA800 instead of SM570 is reduced about 38.9% of tension column and 29.7% of bridge truss. In addition, the number of element's division is reduced about two sections due to reduction of self weight that the crane is able to lift up. This improves to reduce erection sequence and construction period which can save about a month. All connections are reviewed as welding and bolt. Also, the cost of welding is reduced about 41.3% due to apply HSA800. In conclusion, applying HSA800 to the hanging structure aggressively can secure economic and constructability.

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).