• Title/Summary/Keyword: Bridge Column

Search Result 236, Processing Time 0.032 seconds

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Suggestion of the Prediction Method about Upheaval Shape and Volume for SCP Construction (SCP 시공에 따른 융기토 형상과 체적의 예측기법 제안)

  • Jeong, Gyeong-Hwan;Park, Chan-Woo;Shin, Min-Sik;Hideo-Tsuboi;Mitsuo-Nozu;Lee, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.497-508
    • /
    • 2006
  • Busan-Geoje Fixed Link, total length of 8.2km, consist of bridge and immersed tunnel connects Gaduk island, Busan and Jangmokmyon, Geoje, in extension of the $58^{th}$ local road. The immersed tunnel, a total length of 3.7km within Busan-Geoje Fixed Link, was planed first timein domestic but the deep water depth like maximum of 50m with offshore conditions and the 35m thickness of soft clay layer under the immersed tunnel, migth be some problems like the differential settlement during or after works. So it was designed to install SCP(Sand Compaction Pile) column partially to improve the soft ground under the immersed tunnel. In this paper, it is presented to illustrate the design including ground condition under the immersed tunnel, improvement design, upheaval shape and ratio due to SCP test construction.

  • PDF

Typhoon Induced Changes of the Phytoplankton at Bok-gyo Bridge Area in Juam Lake (태풍에 의한 주암호복교지점의 식물플랑크톤 변화)

  • Cho, Ki An;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.253-258
    • /
    • 2018
  • Phytoplankton community was studied in relation to a typhoon at Bok-gyo Bridge area in Juam Lake, Korea. In August 31, 2000, a typhoon (Prapiroon) was passed by Juam Lake with great power enough to destroy summer stratification of Juam Lake. Destratification resulted in temporal mixing of the whole water column and changed the physical and chemical properties of water bodies, and caused the changes of the biological properties. The transparency decreased from 195 cm before the typhoon to 84 cm after the typhoon with the resuspension of the bottom sediment. In the vertical distribution of the phytoplankton population, the maximum population was measured at depth of 2 m before the typhoon. However, immediately after the typhoon, the population distributed evenly throughout the entire water layers. The carbon biomass of the phytoplankton was also highest at the depth of 2 m before the typhoon, but immediately after the typhoon, it was uniformly distributed throughout the whole water layers. The vertical profiles of the concentrations of chlorophyll a, however, did not show a significant difference before and after the typhoon. The typhoon induced destratification and restratification altered the taxa of the phytoplankton. The major dominant phytoplankton taxa before the typhoon was diatoms including Aulacoseira granulata, but the green algae overwhelmed the diatoms in cell number and biomass after the typhoon. The chlorophycean dominance was replaced by cyanophycean dominance with the heavy rain and descent of water temperture at the end of September.

An Experimental Study of Demountable Bolted Shear Connectors for the Easy Dismantling and Reconstruction of Concrete Slabs of Steel-Concrete Composite Bridges (강합성 교량의 콘크리트 바닥판 해체 및 재시공이 용이한 분리식 볼트접합 전단연결재에 관한 실험적 연구)

  • Jung, Dae Sung;Park, Se-Hyun;Kim, Tae Hyeong;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.751-762
    • /
    • 2022
  • Welded head studs are mainly used as shear connectors to bond steel girders and concrete slabs in steel-concrete composite bridges. For welded shear connectors, environmental problems include noise and scattering dust which are generated during the removal of damaged or aged slabs. Therefore, it is necessary to develop demountable shear connectors that can easily replace aged concrete slabs for efficient maintenance and thus for better management of environmental problems and life cycle costs. The buried nut method is commonly studied in relation to bolted shear connectors, but this method is not used in civil structures such as bridges due to low rigidity, low shear resistance, and increased initial slip. In this study, in order to mitigate these problems, a demountable bolted shear connector is proposed in which the buried nut is integrated into the stud column and has a tapered shape at the bottom of an enlarged column shank. To verify the performance of the proposed demountable stud bolts in terms of static shear strength and slip displacement, a horizontal shear test was conducted, with the performance outcomes compared to those of conventional welded studs. It was confirmed that the proposed demountable bolted shear connector is capable of excellent shear performance and that it satisfies the slip displacement and ductility design criteria, meaning that it is feasible as a replacement for existing welding studs.

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Advaced analysis and optimal design of steel arch bridges (강아치교의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.13-21
    • /
    • 2005
  • Advanced analysis and optimal design of steel arch bridges is presented. In the design method using an advanced analysis, separate member capacity checks after analysis are not required because the stability and strength of the structural system and its component members can be rigorously treated in the analysis. The geometric nonlinearity is considered by using the stability function. The Column Research Council tangent modulus is used to account for gradual yielding due to residual stresses. A parabolic function is used to represent the transition from elastic to zero stiffness associated with a developing hinge. An optimization technique used is a modified section increment method. The member with the largest unit value evaluated by AASHTO-LRFD interaction equation is replaced one by one with an adjacent larger member selected in the database. The objective function is taken as the weight of the steel arch bridge and the constraint functions account for load-carrying capacities and deflection requirements. Member sizes determined by the proposed method are compared with those given by other approaches.

Analytical Study of Shear Capacity for Large-Diameter Concrete-Filled Steel Tubes (CFT) (대구경 콘크리트 충전형 합성기둥의 전단성능에 관한 해석적 연구)

  • Jung, Eun Bi;Yeom, Hee Jin;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.435-445
    • /
    • 2015
  • Concrete filled steel tube(CFT), which has superior ductility and strength, is used for building column, bridge piers of ocean structure. Shear design equations of CFT existing in structural design provisions are excessively conservative. It has an effect on constructability and the economics of CFT. However, to suggest the reasonable shear design equation, experimental studies on the shear capacity of CFT have been rarely conducted. This study is analytical research to suggest improved shear design equations of large-diameter concrete-filled steel tubes. This analytical research was conducted to apply finite element analysis model of CFT based on the prior research. It was verified by comparison with prior test results. The verified model was used for parameter studies to estimate the influence of overhang length, concrete compressive strength and diameter-thickness ratio on shear strength.

Seismic performance evaluation of Pier-Shafts system with multi-layered soil (다양한 지반층을 갖는 Pier-Shafts 시스템의 내진성능평가)

  • Jang, Sung-Hwan;Nam, Sang-Hyeok;Song, Ha-Won;Kim, Byung-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.69-72
    • /
    • 2008
  • The so-called Pier-Shafts system which consists of the continuous column and shaft is often used to support the highway bridge structure because of advantages in easy construction and low cost. In the earthquake region, the Pier-Shafts system undergoes large displacements and represents a nonlinear behavior under the lateral seismic loading. The soil-pile interaction should be considered for more accurate analysis of the Pier-Shafts system. In this study, a transverse response of a reinforced concrete Pier-Shafts system inside multi-layered soil medium is predicted using a finite element program which adopts an elasto-plastic interface model for the interface behavior between the shaft and the soil. Then, seismic analysis is performed to evaluate the performance of Pier-Shafts system under strong ground motion and their results are verified with experimental data.

  • PDF

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.