• 제목/요약/키워드: Bridge Cables

검색결과 247건 처리시간 0.022초

Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges

  • Garcia-Guerrero, Juan M.;Jorquera-Lucerga, Juan J.
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.479-495
    • /
    • 2019
  • In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. Thus, this paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch bridges, with the intention of providing designers with useful tools at the early steps of design. Longitudinally and transversally stiffened hangers (and the effect of hinges at the hangers and their locations) are studied separately because the in-plane and the out-of-plane behavior of the bridge are uncoupled due to its symmetry. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, $Nielsen-L\ddot{o}hse$ or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient and, additionally, cheaper and easier to build can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.

Sag가 고려된 사장교 케이블의 진동저감을 위한 Movable Anchorage 시스템 (Movable Anchorage System for Mitigation of Cable Vibration in Cable-Stayed Bridges with Sag)

  • 황인호;박준형;이종세
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.657-664
    • /
    • 2008
  • 사장교 케이블은 구조적으로 휨강성과 감쇠력이 작아 풍우에 의해 쉽게 유해진동이 발생한다. 이러한 풍우진동을 저감시키기 위한 효과적인 방법으로 부가댐퍼를 장착하여 케이블의 감쇠력을 증가시키는 제어시스템이 널리 사용되어왔다. 그러나 사장교의 장대화로 인해 구조적으로나 미적으로 충분한 감쇠력을 제공할 수 있는 위치에 부가댐퍼를 장착하기 어렵게 되었다. 최근 본 저자는 사장교의 미관을 해치지 않으면서 기존의 제어시스템보다 효과적으로 케이블의 진동을 저감시킬 수 있는 새로운 개념의 사장교 케이블 진동 제어시스템을 제안하였다. 본 논문에서는 기존의 연구를 확장하여 새그(Sag)를 고려한 Movable anchorage 시스템을 제안하였으며, 수치해석을 통한 제어성능을 평가하였다. 수치해석의 결과 제안된 시스템은 새그를 고려하였을 때에도 고려하지 않은 경우와 마찬가지로 베어링장치의 강성이 작을수록 기존의 비감쇠 시스템이나 일반적인 수동제어시스템보다 훨씬 좋은 성능을 나타내었다. 제안된 시스템에 있어서 최적의 제어성능을 제공하기 위해서는 새그의 크기를 고려해서 최적의 감쇠계수를 결정해야 할 것으로 사료된다.

케이블에 의하여 매달려 있는 현수교 방정식의 발견과 연구의 흐름 (The Bridge Suspended by Cables and the History of Investigation of the Equation Induced from It)

  • 남혜원;최규홍
    • 한국수학사학회지
    • /
    • 제18권2호
    • /
    • pp.107-116
    • /
    • 2005
  • 현수교 방정식은 비선형 동역학 시스템 중 점프가 일어나는 비선형 부분을 갖는 대표적인 예이다. 터코마 내로스(Tacoma Narrows) 현수교의 붕괴 이후 현수교 유사한 조건에 대한 연구 및 현수교의 안정성에 대한 연구가 활발히 진행되었다. 이 논문에서는 현수교 방정식의 모델링과 해의 존재성 및 다중성 연구에 대하여 조사하였다.

  • PDF

MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge

  • Chen, Z.Q.;Wang, X.Y.;Ko, J.M.;Ni, Y.Q.;Spencer, B.F.;Yang, G.;Hu, J.H.
    • Wind and Structures
    • /
    • 제7권5호
    • /
    • pp.293-304
    • /
    • 2004
  • The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. Several intensive wind-rain induced vibrations had been observed since its open to traffic in 1999. To investigate the possibility of using MR damping systems to reduce cable vibration, a series of field tests were conducted. Based on the promising research results, MR damping system was installed on the longest 156 stay cables of Dongting Lake Bridge in June 2002, making it the worlds first application of MR dampers on cable-stayed bridge to suppress the wind-rain induced cable vibration. As a visible and permanent aspect of the bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes field tests and the implementation of MR damping systems for cable vibration reduction. Three-years reliable service of this system proves its durability.

A deformable section model for the dynamics of suspension bridges -Part I : Model and linear response

  • Sepe, Vincenzo;Augusti, Giuliano
    • Wind and Structures
    • /
    • 제4권1호
    • /
    • pp.1-18
    • /
    • 2001
  • The classical two-degree-of-freedom (2-d-o-f) "sectional model" is currently used to study the dynamics of suspension bridges. Taking into account the first pair of vertical and torsional modes of the bridge, it describes well global oscillations caused by wind actions on the deck and yields very useful information on the overall behaviour and the aerodynamic and aeroelastic response, but does not consider relative oscillation between main cables and deck. The possibility of taking into account these relative oscillations, that can become significant for very long span bridges, is the main purpose of the 4-d-o-f model, proposed by the Authors in previous papers and fully developed here. Longitudinal deformability of the hangers (assumed linear elastic in tension and unable to react in compression) and external loading on the cables are taken into account: thus not only global oscillations, but also relative oscillations between cables and deck can be described. When the hangers go slack, large nonlinear oscillations are possible; if the hangers remain taut, the oscillations are small and essentially linear. This paper describes the model proposed for small and large oscillations, and investigates in detail the limit condition for linear response under harmonic actions on the cables (e.g., like those that could be generated by vortex shedding). These results are sufficient to state that, with geometric and mechanical parameters in a range corresponding to realistic cases of large span suspension bridges, large relative oscillations between main cables and deck cannot be excluded, and therefore should not be neglected in the design. Forthcoming papers will investigate more general cases of loading and dynamic response of the model.

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

Optimum design of cable-stayed bridges

  • Long, Wenyi;Troitsky, Michael S.;Zielinski, Zenon A.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.241-257
    • /
    • 1999
  • This paper presents a procedure to minimize the cost of materials of cable-stayed bridges with composite box girder and concrete tower. Two sets of iterations are included in the proposed procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The second set of iteration performs the optimization process. The design is formulated as a general mathematical problem with the cost of the bridge as the objective function and bending forces, shear forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function method is used in the optimization process. The limit states design method is used to determine the load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity is verified by several practical-sized designs.

Active tendon control of suspension bridges

  • Preumont, Andre;Voltan, Matteo;Sangiovanni, Andrea;Mokrani, Bilal;Alaluf, David
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.31-52
    • /
    • 2016
  • The paper first reviews the theory of active tendon control with decentralized Integral Force Feedback (IFF) and collocated displacement actuator and force sensor; a formal proof of the formula giving the maximum achievable damping is provided for the first time. Next, the potential of the control strategy for the control of suspension bridges with active stay cables is evaluated on a numerical model of an existing footbridge; several configurations are investigated where the active cables connect the pylon to the deck or the deck to the catenary. The analysis confirms that it is possible to provide a set of targeted modes with a considerable amount of damping, reaching ${\xi}=15%$. Finally, the control strategy is demonstrated experimentally on a laboratory mock-up equipped with four control stay cables equipped with piezoelectric actuators. The experimental results confirm the excellent performance and robustness of the control system and the very good agreement with the predictions.

Aerodynamic stability of stay cables incorporated with lamps: a case study

  • Li, S.Y.;Chen, Z.Q.;Dong, G.C.;Luo, J.H.
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.83-101
    • /
    • 2014
  • Lamps installed on stay cables of cable-stayed bridges may alter the configuration of circular cross section of the cables and therefore result in aerodynamically unstable cable vibrations. The background of this study is a preliminary design of lamp installation on the cable-stayed He-dong Bridge in Guangzhou, China. Force measurements and dynamic response measurements wind tunnel tests were carried out to validate the possibility of cable galloping vibrations. It is observed that galloping will occur and the critical wind velocity is far less than the design wind velocity at Guangzhou City stipulated in Chinese Code. Numerical simulations utilizing software ANSYS CFX were subsequently performed and almost the same results as the wind tunnel tests were obtained. Moreover, the pressure and velocity contours around cable-lamp model obtained from numerical simulations indicated that the upstream steel wire in the preliminary design is the key factor for the onset of the galloping vibrations. A modification for the preliminary design of lamp installation, which suggests to remove the two parallel steel wires, is proposed, and it effectiveness is validated in further wind tunnel tests.

사장교의 초기인장력과 주탑좌표를 고려한 최적설계 (Optimization of Cable Stayed Bridges Considering Initial Cable Tension and Tower Coordinates)

  • 김경승;김문겸;황학주
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.205-213
    • /
    • 1988
  • 사장교는 그 설계에 있어서 케이블의 개수와 배치형식, 케이블의 초기인장력, 주탑의 지지형식과 높이 등 거어더와 주탑 단면외에도 설계변수가 많으므로 효율적인 설계를 하는 것이 쉽지 않다. 본 연구에서 케이블의 초기인장력, 거어더와 주탑의 단면, 주탑의 높이를 설계변수로 하여 사장교의 설계를 최적화하는 문제를 다루었다. 서로 상호작용을 하는 여러 설계변수를 동시에 최적화하는 어려움을 피하기 위하여 본 논문에서는 초기인장력, 단면, 주탑의 좌표를 각각 독립된 설계공간에서 최적화하였다. 목적함수로서는 초기인장력 공간에서는 전체구조의 변형에너지를, 단면 및 좌표의 공간에서는 재료의 총중량을 취하였다. 제약조건으로는 초기인장력의 상하한계, 부재의 좌굴을 고려한 응력, 단면적의 하한계를 고려하였다. 대표적인 Fan형 및 Harp형 사장교를 최적설계한 결과, 제시된 방법에 의하여 합리적인 결과를 얻을 수 있음을 보이고, 기존의 최적화에서 고려하지 않았던 좌표의 최적화를 통하여 경제성을 얻을 수 있다는 것을 밝혔다.

  • PDF