• Title/Summary/Keyword: Breeding Program

Search Result 421, Processing Time 0.031 seconds

Impact of Confinement and Population Size on the Instrumentally Inseminated Queen's Performance of Apis cerana Species in South Korea

  • Vung, Nguyen Ngoc;Kim, Iksoo;Lee, Man-Young;Kim, Hye Kyung;Kim, Dong Won;Choi, Yong Soo
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.251-260
    • /
    • 2018
  • Instrumental insemination of honey bee is an attractive alternative to natural mating in breeding program as it allows mating crosses between desirable queen and specific drone. However, nursery condition that the queen is kept before and after insemination is major factor affected to the performance of instrumentally inseminated queen. In this study, we evaluated the influences of three different nursery-conditions of push-in cages, mini nuclei and normal colonies on number of spermatozoa stored in the spermatheca, body weight, onset of ovipositon and performance of instrumentally inseminated Apis cerana queen. Our results demonstrated that instrumentally inseminated queens kept in mini nuclei and in normal hives showed no significant difference in queen's weight (159.8 and 166.2mg, respectively), number of spermatozoa in spermatheca ($2.02{\times}10^6$ and $2.76{\times}10^6$, respectively), proportion of queen supersedure (33.3 and 66.7% queen survival at 11 months after oviposition, respectively) and brood production, compared to naturally mated queens. In contrast, instrumentally inseminated queens kept in push-in cages showed significant difference of those above data in comparison to queens mated naturally. Our results suggested that instrumentally inseminated queens could be kept in mini nuclei containing about 1.000 attendant bees to have desirable performance of queen whereas the push-in method should be practiced for the purpose of using queen in the length of time less than 7 months.

Establishment of normal reference intervals in serum biochemical parameters of domestic sows in Korea

  • Kim, Dongyub;Kim, Hwan-Deuk;Son, Youngmin;Kim, Sungho;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Because sows are industrially vital for swine production, monitoring for their health or disorder status is important to ensure high reproductive performance. Especially, ambient temperature changes in different season, especially during summer, are directly influenced to the reproductive performance of sows. Although the serum biochemical parameters are widely applied in the veterinary medicine with wide ranges for the physiological process, the values are also influenced by several factors such as age, breed, gender, and stress. In addition, domestic sows in Korea-specific reference interval (RI) for serum biochemistry has not been established yet. Therefore, the present study was aimed to evaluate seasonal variation of RIs in the serum biochemistry in domestic sows in Korea at different seasons and to establish normal RIs using a RI finding program (Reference Value Advisor). Significant difference (p < 0.05) on the different seasons were identified in several serum biochemical parameters including BUN, CRE, GGT, GLU, ALB, TP, LDH and Na in sows. Therefore, we further established RIs, specific in domestic sows in Korea regardless of season. The established RIs based on the serum biochemical values provide a baseline for interpreting biochemical results in the domestic sows in Korea, regardless of seasonal effect. It may contribute to develop a strategy for better reproductive performance by improving breeding management practice and evaluating health of pig herds, which facilitate to avert the economic loss in summer infertility in sows.

Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis

  • Choi, Boyoon;Kim, Hyeyoung;Jang, Jungim;Park, Sihyeon;Jung, Hosung
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.846-854
    • /
    • 2022
  • Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.

Assessment of population structure and genetic diversity of German Angora rabbit through pedigree analysis

  • Abdul Rahim;K. S. Rajaravindra;Om Hari Chaturvedi;S. R. Sharma
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.692-703
    • /
    • 2023
  • Objective: The main goals of this investigation were to i) assess the population structure and genetic diversity and ii) determine the efficiency of the ongoing breeding program in a closed flock of Angora rabbits through pedigree analysis. Methods: The pedigree records of 6,145 animals, born between 1996 to 2020 at NTRS, ICAR-CSWRI, Garsa were analyzed using ENDOG version 4.8 software package. The genealogical information, genetic conservation index and parameters based on gene origin probabilities were estimated. Results: Analysis revealed that, 99.09% of the kits had both parents recorded in the whole dataset. The completeness levels for the whole pedigree were 99.12%, 97.12%, 90.66%, 82.49%, and 74.11% for the 1st, 2nd, 3rd, 4th, and 5th generations, respectively, reflecting well-maintained pedigree records. The maximum inbreeding, average inbreeding and relatedness were 36.96%, 8.07%, and 15.82%, respectively. The mean maximum, mean equivalent and mean completed generations were 10.28, 7.91, and 5.51 with 0.85%, 1.19%, and 1.85% increase in inbreeding, respectively. The effective population size estimated from maximum, equivalent and complete generations were 58.50, 27.05, and 42.08, respectively. Only 1.51% of total mating was highly inbred. The effective population size computed via the individual increase in inbreeding was 42.83. The effective numbers of founders (fe), ancestors (fa), founder genomes (fg) and non-founder genomes (fng) were 18, 16, 6.22, and 9.50, respectively. The fe/fa ratio was 1.12, indicating occasional bottlenecks had occurred in the population. The six most influential ancestors explained 50% of genes contributed to the gene pool. The average generation interval was 1.51 years and was longer for the sire-offspring pathway. The population lost 8% genetic diversity over time, however, considerable genetic variability still existed in the closed Angora population. Conclusion: This study provides important and practical insights to manage and maintain the genetic variability within the individual flock and the entire population.

QTL Mapping for Protein Content Derived from a Cross between oryza sativa and Weedy Rice

  • Ju-Won Kang;Ji-Yoon Lee;Gi-Un Seong;Youngho Kwon;So-Myeong Lee;Dong Jin Shin;Sais-Beul Lee;Hyunnggon Mang;Dong Soo Park;Jong-Hee Lee;Jun-Hyeon Cho;Gi-Won Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.268-268
    • /
    • 2022
  • Protein is a major nutrient of food and has long been studied for nutritional and utility value. Among them, rice protein is attracting attention because of its hypoallergenic characteristics and nutritional value. Mutant DM225 with increased protein content was selected by EMS treatment on the weed rice Dharial. QTL analysis of Protein content was carried out using BC2F2 populations derived from a cross between "Hanareum2" as a recurrent parent and "DM225" as a donor parent. The protein content of populations was between 5~11%, with an average of 7.7%. To identify QTLs related to Protein content, 117 KASP markers(polymorphic ratio: 15%) showing polymorphisms between the parents were genotyped for the BC2F2 population. One QTL was detected between markers SK07 06 and SK07_10 on chromosome 7(LOD: 28.1). This QTL explained 71.4% of the phenotypic variance for Protein content. This QTL will be useful for protein-related rice breeding program.

  • PDF

Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance (과수화상병 저항성 사과대목의 MR5보유 대목별 비교)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

Induction on in vitro Plant Regeneration the Apple Rootstocks of Fire Blight Resistance by Plant Growth Regulators (생장조절제 처리에 따른 과수화상벙 저항성 사과대목의 기내 식물체 유도)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.23-23
    • /
    • 2021
  • Apple (Malus×domestica Borkh.; Rosaceae) is an important fruit crop grown mainly in temperate regions of the world. Tissue culture in vitro is a biotechnological technique that has been used to genetically improve cultivars (scions) and rootstocks. This could be important in the production of genetically uniform scions and rootstocks for commercial apple production. In nurseries, apple plants are produced by grafting scions onto rootstocks. The Cornell-Geneva (Geneva® series) breeding program has bred several dwarf rootstocks that are resistant to diseases and pests and are also cold hardy. This study was conducted to determine the optimal medium strength to improve sprouting shoot rate of apical meristem of the apple rootstocks of fire blight resistance. The apple rootstocks apical meristem at size (0.2 mm to 0.3 mm) with axillary buds were cultured on the MS(Murashige & Skoog) medium supplemented with plant growth regulators. The sprouting ratio and growth characteristics was evaluated after eight weeks in vitro culture. The highest rate of bud differentiation and shoot formation were 23.8% and 55.6%, respectively. After 6 weeks, shoots were regenerated from apical meristem, and their growth characteristics was significantly varied on the respective basal medium with different plant growth regulators. Our studies showed that the apple rootstocks the apple rootstocks of fire blight resistance plantlets could be successfully produced from apical meristem differentiated out of young twigs via organogenic regeneration.

  • PDF

Comparison of Main Chracteristics of Buckwheat (Fagopyrum esculentum Moench) Cultivars Grown in Korea (메밀 육성 품종의 주요 농업특성 비교)

  • Su Jeong Kim;Hwang Bae Sohn;Yul Ho Kim;Jung Hwan Nam;Jong Nam Lee;Dong Chil Chang;Jong Taek Suh
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.26-26
    • /
    • 2021
  • 메밀(Fagopyrum esculentum Moench)은 마디풀과(Polygonaceae) 메밀속 (Fagopyrum)으로 약 20종이 있으며, 전 세계 인류 역사와 함께해 왔으며, 오랫동안 사랑을 받아 온 작물이다. 메밀 생태형 분류는 늦게 파종할수록 종실 수량이 떨어지는 여름메밀, 반대로 늦게 파종할수록 종실 수량이 증가하는 가을메밀과 중간형 메밀이 있다. 여름메밀 대표품종은 양절메밀, 양절메밀2호가 있다. '양절메밀'은 춘파·하파 재배가 가능한 여름메밀 품종으로, 1994년 육성되어 장려 품종으로 결정되었다. '양절메밀'의 특성은 유한생육 초형으로, 조숙·단간·다수성 이며, 꽃색은 흰색이며 종자는 흑색이다. 성숙일수는 60-64일로 짧으며, 성숙 후에도 탈립이 강하고, 경장은 단간으로, 도복에 강한 편이다. 그 후 수량성이 증가된 '양절메밀 2호'가 육성되었다. 양절메밀2호는 대립종자로 종자가 흑갈색이며 천립중도 29.5g으로 양절메밀보다 무겁다. 가을메밀로는 대산메밀, 다원 및 순백이 육성되었다. 싹용인 '대산메밀'은 줄기가 연홍색이고 종자가 갈색이었다. '대산메밀'은 가을메밀 품종으로 가을 재배에 적합하다. 경장은 중장간종이며, 생육 일수는 양절메밀보다 약간 늦은 중생종이다. 메밀싹 수율이 높아 새싹 재배에 적합한 것으로 나타났다.

  • PDF

Growth characteristics and antioxidant activity of domestic calla lily (Zantedeschia aethiopica)

  • Kyung Hye Seo;Myung Suk Ahn;Ji Hun Yi;Young Ran Lee;Yun-Im Kang;Youn Jung Choi;Jung Nam Suh;Hye Sook Jang
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.219-230
    • /
    • 2023
  • Calla lily is one of the most iconic and widely recognized ornamental plants. This study compared the extracts of 11 cultivars of domestic calla lily bred by the National Institute of Horticultural and Herbal Science for their total polyphenol and antioxidant activities. Eleven cultivars were evaluated for their growth and flowering characteristics as per the Manual for Agricultural Investigation Rural Development Administration (RDA) form. The antioxidant activities were measured using 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid)-diammounium salt (ABTS+) and 1,1-diphenyl-2-picrrylhydrazyl (DPPH) radical scavenging effect. The plants have an average height of 63.80 ± 5.4 cm, average flower diameter of 7.2 ± 1.1 cm, and width of 12.4 ± 1.7 cm. On average, the diameter and width of leaves were 33.7 ± 3.5 cm and 20.0 ± 1.4 cm, respectively. Extracts of flowers and leaves in the 11 cultivars of white calla lily were compared for their antioxidant activities and total polyphenol contents. ABTS+ and DPPH radical scavenging, which are indicative of antioxidant activity, were higher in flowers than in leaves. When comparing by cultivar, we found that 'White Egg' showed the highest antioxidant activity in both the flowers and the leaves. Additionally, we found that by part, the content of total polyphenols was highest in flowers, and by cultivar, it was highest in the 'Swan' and 'White Egg' cultivars. Furthermore, the days to flowering showed correlations with ABTS+ radical scavenging, total phenolic contents (TPC), and total flavonoid contents (TFC). Our results indicate that calla lily can be used as breeding material material according to its growth characteristics and as a natural antioxidant source.

Parameters on Physiological Responses of Soybean (Glycine max Merr.) to Salinity (염분에 대한 콩의 생리학적 반응지표 연구)

  • Chon, Sang-Uk;Park, Jong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2003
  • The mechanism imparting salt tolerance to crop plants remains still unsolved, although soybean has been classified as a susceptible plant to NaCl. To determine optimum parameters on physiological responses for improving sensitivity of salinity in breeding program, soybean (Glycine max Merr., cv. "Gwan-gan") plants were grown in a greenhouse, treated 20 days after emergence for 7 days with NaCl at 0, 30, 60, and 90mM, corresponding to electric conductivity of 1.2, 4.4, 7.3, and 10.4 dS/m, respectively, and assessed 30 days after treatment. Chlorophyll contents were significantly decreased by NaCl ($0.4{\sim}1.0\;mg/g$) compared to control (1.2 mg/g). Photosynthesis rate by NaCl treatment at $0{\sim}90\;mM$ at flowering stage was ranged from 5.0 (control) to $9.6\;{\mu}mol/m^2/s$. Oxygen for respiration was consumed from 5.4 to $9.7\;{\mu}mol/m^2/s$ so that the ratio of $O_2$ (evolution:consumption) was increased with the increase of NaCl, indicating that $O_2$ consumption seems to go beyond $O_2$ evolution. Water potential of leaf at vegetative stage II was ranged from -0.6 to -1.8 MPa and the highest level was observed at mid-day. Water potential by salt stress was decreased with range of $-2.1{\sim}-2.7MPa$ compared to control. Transpiration was decreased from 17% to 20% by NaCl stress. Water vapor diffusing resistance of intercellular air space was affected significantly, increasing up to $16{\sim}24%$ compared to control by NaCl treatment. Salt-treated soybean tended to accumulate $Na^+$, specially in root, with reduced absorption of N, P, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ contents. Free proline content of soybean leaf as affected by different NaCl concentrations was increased 4.2 times ($184{\sim}434\;{\mu}g/g$) more than control. NaCl also increased activities of nitrate reductase and peroxidase by $28{\sim}161%$ and $3{\sim}22%$, respectively. The results show that physiological characteristics of soybean plants during assay were useful as the best parameters of salt stress or salt tolerance test to improve sensitivity in screening and breeding program among cultivars or germplasms.