• Title/Summary/Keyword: Breathing sensor

Search Result 47, Processing Time 0.027 seconds

Development of stuttering treatment practice device using stretch sensors (스트레치 센서를 이용한 말더듬 치료 훈련기의 개발)

  • Song, Byung-Seop;Rhee, Kun-Min
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.415-422
    • /
    • 2005
  • Using stretch sensors, a stuttering treatment training device that improve the abnormal breathing of stutterer was designed and developed. To improve stutterer's inadequate breathing method that is one of principal reason of stammering, the device estimates breathing method by checking the changes of the stretch sensor's resistances those are put on the chest and abdomen of user. And a vocal exercise program that carry out exercises only when the user maintains the abdominal breathing was designed. Using a PIC16C711 device that includes an A/D convertor, a main controller was designed and the vocal exercises software was developed using Director and C program with graphic user interface for user convenience. The controller sends the resistance data of sensors to PC through the serial port and the software verifies the breathing method. And the device was designed that the RTS (request to send) pin of serial port in PC is used as a power source so that it can work without any battery or other power source. Three stutterers have carried out the clinical experiments using the implemented device for two months and the results showed it was excellent to alleviate the stuttering.

Implementation of Smart Monitoring System based on Breathing Sensor

  • Cha, jin-gil;Kim, Seong-Kweon
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.36-41
    • /
    • 2022
  • In the 21st century, information collection and information provision based on digital informatization and intelligent automation are emerging as one of the social problems in the society for the elderly and the vulnerable groups in the welfare society including the disabled, and various methods are being studied to find realistic alternatives. Among these factors, the problem of the elderly living alone is emerging as the most serious, and as a realistic approach to solve some problems by applying information devices, it is a monitoring system using the Internet of Things(IoT). The need for an optimized system is emerging. In this study, the state of the elderly and the elderly living alone can be measured remotely by applying IoT technology. We present the research cases of a Breathing Sensor-based Smart Monitoring System that is used as a smart information system and used as a monitoring system for the elderly and infirm when it is identified as deceased through state detection

Signal Analysis for Detecting Abnormal Breathing (비정상 호흡 감지를 위한 신호 분석)

  • Kim, Hyeonjin;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.249-254
    • /
    • 2020
  • It is difficult to control children who exhibit negative behavior in dental clinics. Various methods are used for preventing pediatric dental patients from being afraid and for eliminating the factors that cause psychological anxiety. However, when it is difficult to apply this routine behavioral control technique, sedation therapy is used to provide quality treatment. When the sleep anesthesia treatment is performed at the dentist's clinic, it is challenging to identify emergencies using the current breath detection method. When a dentist treats a patient that is under the influence of an anesthetic, the patient is unconscious and cannot immediately respond, even if the airway is blocked, which can cause unstable breathing or even death in severe cases. During emergencies, respiratory instability is not easily detected with first aid using conventional methods owing to time lag or noise from medical devices. Therefore, abnormal breathing needs to be evaluated in real-time using an intuitive method. In this paper, we propose a method for identifying abnormal breathing in real-time using an intuitive method. Respiration signals were measured using a 3M Littman electronic stethoscope when the patient's posture was supine. The characteristics of the signals were analyzed by applying the signal processing theory to distinguish abnormal breathing from normal breathing. By applying a short-time Fourier transform to the respiratory signals, the frequency range for each patient was found to be different, and the frequency of abnormal breathing was distributed across a broader range than that of normal breathing. From the wavelet transform, time-frequency information could be identified simultaneously, and the change in the amplitude with the time could also be determined. When the difference between the amplitude of normal breathing and abnormal breathing in the time domain was very large, abnormal breathing could be identified.

Development of Personalized Respiratory Training Device with Real-time Feedback for Respiratory Muscle Strengthening

  • Merve Nur Uygun;Yeong-geol Bae;Yejin Choi;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2023
  • Objective: The practice of breathing exercises involves altering the depth and frequency of respiration. Strengthening respiratory muscles plays a crucial role in maintaining overall health and well-being. The efficiency of the respiratory system affects not only physical activity but also various physiological processes including cardiovascular health, lung function, and cognitive abilities. The study evaluated the reliability of the developed device for inspiratory/expiratory training using pressure sensors and Bluetooth connectivity with a smartphone application. Design: Design & development research Methods: The research methodology involved connecting a custom-made respiratory sensor to an IMT-PEP BIC Breath device. Various pressure conditions were measured, and statistical analyses were performed to assess reliability and consistency. Results showed high Intraclass Coefficient Correlation (ICC) values for both inspiratory and expiratory pressures, indicating strong test-retest reliability. The device was designed for ease of use and wireless monitoring through a smartphone app. Results: This study conducted at expiratory pressure confirmed the proper operation of the IMT/PEP breathing trainer at the specified pressure setting in the product. The pressure sensor demonstrated high test-retest reliability with an ICC value of 0.999 for both expiratory and inspiratory pressure measurements. Conclusions: The developed respiratory training device measured and monitored inspiratory and expiratory pressures, demonstrating its reliability for respiratory training. The system could be utilized to record training frequency and intensity, providing potential benefits for patients requiring respiratory interventions. Further research is needed to assess the full potential of the device in diverse populations and applications.

A Study on the Textile Sensor Applied to Smart Wear for Monitoring Meditation Breathing (명상호흡 모니터링용 스마트의류를 위한 호흡수 측정 직물센서 연구)

  • Hwang, Su Jung;Jung, Yoon Won;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • The purpose of this study is for fundamental research of meditation smart wear for physical and mental healing, and researching method for monitoring phase of meditation through textile by measuring the number of abdominal respiration when meditating. For this purpose, the research implemented Single Wall Carbon Nano-Tube (SWCNT) based strain gauges type textile sensor, considered reliability and validity of respiratory sensing, and analyzed efficiency of respiratory sensing based on body parts comparatively. The first preliminary experiment was to evaluate the performance of textile sensor through abdominal model dummy which open and shut of 5 cm repeatedly for 2 minutes at the rate of 0.1Hz in order to simulate abdominal respiration. It concluded signal efficiency between reference sensor(BIOPAC) and textile respiratory sensor appears statistically significant (p<0.001). The second experiment were conducted with 4 subjects doing abdominal respiration under same conditions, and after comparing the signal values between two sensors from 4 attached locations(around center and sides of omphali and phren), center of omphali and sides of phren were selected as suitable location for measuring meditational breathing as they showed large and stable signals. In result, this research aimed for implementing of the textile sensor for sensing meditational breathing of long respiration cycle, review of reliability and validity for sensing number of meditational respiration with the sensor and consideration of sensing efficiency by sensing location on body parts.

Development of PVDF sensor and system to detect breathing sounds during deep sedation (진정 마취 시 호흡음 검출을 위한 PVDF 센서 및 시스템 개발)

  • Lee, Seung-Hwan;Li, Xiong;Im, Jae-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.153-159
    • /
    • 2019
  • Respiration is one of the important vital signs to determine the condition of the patient. Especially during deep sedation, since the patient's apnea and hypopnea are difficult to detect without continuous monitoring, there is a need for a continuous respiration monitoring method that can accurately and simply determine the patient's respiratory condition. Currently, respiration monitoring methods using various devices have been developed, but these methods have not only late response time but also low reliability at the clinical stage. In this study, attachable sensor using PVDF(polyvinylidene fluoride) film and a monitoring device which could detect abnormal symptoms of breathing in early stage during deep sedation. The results of this study can be used in various medical fields including not only in the area of remote monitoring for respiration related sleep monitoring but also in routine monitoring during deep sedation.

Development of Respiratory Training System Using Individual Characteristic Guiding Waveform (환자고유의 호흡 패턴을 적용한 호흡 연습장치 개발 및 유용성 평가)

  • Kang, Seong-Hee;Yoon, Jai-Woong;Kim, Tae-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The purpose of this study was to develop the respiratory training system using individual characteristic guiding waveform to reduce the impact of respiratory motion that causes artifact in radiotherapy. In order to evaluate the improvement of respiratory regularity, 5 volunteers were included and their respiratory signals were acquired using the in-house developed belt-type sensor. Respiratory training system needs 10 free breathing cycles of each volunteer to make individual characteristic guiding waveform based on Fourier series and it guides patient's next breathing. For each volunteer, free breathing and guided breathing which uses individual characteristic guiding waveform were performed to acquire the respiratory cycles for 3 min. The root mean square error (RMSE) was computed to analyze improvement of respiratory regularity in period and displacement. It was found that respiratory regularity was improved by using respiratory training system. RMSE of guided breathing decreased up to 40% in displacement and 76% in period compared with free breathing. In conclusion, since the guiding waveform was easy to follow for the volunteers, the respiratory regularity was significantly improved by using in-house developed respiratory training system. So it would be helpful to improve accuracy and efficiency during 4D-RT, 4D-CT.

EMS Ventilation Belt Using Stretch Sensor Effect on Respiratory Activation (스트레치 센서를 활용한 EMS 복압벨트가 호흡 활성화에 미치는 영향)

  • Kim, Dae-Yeon;Park, Jin-hee;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.69-78
    • /
    • 2021
  • The development of smart healthcare wearables for health is accelerating. Among them, many wearable products using EMS electrical stimulation, which is one of the active research fields, have been released. However, the EMS wearable, which has been studied or released, is released in a comprehensive full-body suit that does not focus on muscle segmentation or a belt that covers the entire abdomen. Therefore, this study intends to use two breathing methods by applying an EMS pattern that subdivides specific muscles and attach a stretch sensor that can measure breathing to the abdominal pressure belt. The measurement method was conducted by inhaling and exhaling, and the subjects were 10 men in their 20s with healthy bodies. As a result of this study, the sensor's sensitivity was 5 and 3 mm, and the basic sensor in both thoracic and abdominal breathings and the EMS abdominal pressure belt showed improved respiration activation after applying electrical stimulation before and after application. It is concluded that, because of the two patterns produced based on the physical function, the difference in respiration activation effect and sensitivity between sensors could be confirmed with three sensors rather than not applying electrical stimulation suitable for the respiration method. Based on the results of this study, a follow-up study aims to develop breathing smart clothing that can be monitored in real time in clothing-type wearable products that incorporate EMS patterns and stretch sensors.

Design of Respiratory Sensor System for polysomnography using Thermocouple (Polysomnography를 위한 열전대 호흡센서 시스템의 설계)

  • 우용규;정도언;박광석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.121-123
    • /
    • 2000
  • Changes in breathing pattern and apnea both can be !he result of sleep disorders. The focus of this paper is to develop methodologies to monitor the breathing pattern and to detect apnea. An accurate recording of the respiratory phase can be carried out with different methods. One of these methods is the use of a thermocouple, which reacts to the variation in air temperature, placed in the nose and mouth of the patient. The K-type thermocouple was used because it has high reliability, thermo-stability, and good corrosion resistance. And also, it has a considerable long time constant that gives a low cut-off frequency, well below the respiratory frequency and thereby causing a large phase difference. The result showed that timing of respiration was accurately obtained with the AD595, amplifier for K-type thermocouple.

  • PDF

Using nano-micro-control technology to improve breathing pressure in vocal music technique teaching innovation

  • Jiayue Cui;Hongliang Zhang
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.239-251
    • /
    • 2023
  • In the present study, we aim to use nanotechnology sensors/actuators to capture pressure and frequency of voice singers and to send signals for improving breathing pressure. In this regard, a circular composite structure having 3 different layers are used. The core layer is nano-composite material reinforced with graphene nanoplatelets. The face sheets are piezo electric materials connected to electrical circuit capable of measuring and applying voltage to the piezoelectric layers. This sensors have extremely smaller size than conventional sensors attached to the neck of singer and, hence, minimizes the influences on the output voice of the singer. A brief theoretical framework are presented for nonlocal strain gradient theory and geometry of the sensor is described in detail. The controlling procedure along with experimental results on 20 amateur and professional singer participants are also presented. The results of the study indicate that the participants could gain benefit from the device for improving their ability in phonation and keeping their frequency at a constant level although they have difficulty in the beginning of the experiment getting used to the device.