• Title/Summary/Keyword: Breast cell invasion

Search Result 112, Processing Time 0.021 seconds

Pristimerin Inhibits Breast Cancer Cell Migration by Up-regulating Regulator of G Protein Signaling 4 Expression

  • Mu, Xian-Min;Shi, Wei;Sun, Li-Xin;Li, Han;Wang, Yu-Rong;Jiang, Zhen-Zhou;Zhang, Lu-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1097-1104
    • /
    • 2012
  • Background/Aim: Pristimerin isolated from Celastrus and Maytenus spp can inhibit proteasome activity. However, whether pristimerin can modulate cancer metastasis is unknown. Methods: The impacts of pristimerin on the purified and intracellular chymotrypsin proteasomal activity, the levels of regulator of G protein signaling 4 (RGS 4) expression and breast cancer cell lamellipodia formation, and the migration and invasion were determined by enzymatic, Western blot, immunofluorescent, and transwell assays, respectively. Results: We found that pristimerin inhibited human chymotrypsin proteasomal activity in MDA-MB-231 cells in a dose-dependent manner. Pristimerin also inhibited breast cancer cell lamellipodia formation, migration, and invasion in vitro by up-regulating RGS4 expression. Thus, knockdown of RGS4 attenuated pristimerin-mediated inhibition of breast cancer cell migration and invasion. Furthermore, pristimerin inhibited growth and invasion of implanted breast tumors in mice. Conclusion: Pristmerin inhibits proteasomal activity and increases the levels of RGS4, inhibiting the migration and invasion of breast cancer cells.

Effects of Epigallocatechin Gallate on Adhesion, Invasion and Matrix Metalloproteinase Activity in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate(EGCG)가 MDA-MB-231 인체 유방암 세포의 부착성, 침윤성과 Matrix Metalloproteinase 활성에 미치는 영향)

  • Bang Myung Hee;Kim Ji Hye;Kim Woo Kyoung
    • Journal of Nutrition and Health
    • /
    • v.38 no.2
    • /
    • pp.104-111
    • /
    • 2005
  • Tumor invasion is composed of four steps: cell adhesion to the extracellular matrix, degradation of the extracellular matrix components, tumor cell motility followed by cell detachment. Matrix metalloproteinases (MMPs) are important proteinases that associated with degradation of matrix component. Epigallocatechin gallate (EGCG) is a major polyphenotic constituent of green tea. In the study, we examined the anti-invasive and MMP activity suppression effects of EGCG in MDA-MB-231 human breast cancer cells. MDA-MB-23l human breast cancer cells were cultured with various concentrations 0 - 100 μM of EGCG. EGCG significantly inhibited the cell adhesion to the fibronectin. Cell motility through gelatin filter and invasion to Matrigel were inhibited dose-dependently by EGCG treatment. EGCG also inhibited the activities of MMP-2, -9 and the amount of MMP-9 (α = 0.05). Therefore, EGCG may contribute to the potential beneficial food component to prevent the invasion and metastasis in breast cancer. (Korean J Nutrition 38(2): 104~111, 2005)

Effect of Curcumin on Cancer Invasion and Matrix Metalloproteinase-9 Activity in MDA-MB-231 Human Breast Cancer Cell (Curcumin이 인체 유방암세포 MDA-MB-231 Cell의 전이 과정과 Matrix Metalloproteinase-9 활성에 미치는 영향)

  • Bang, Myung-Hee;Kim, Woo-Kyoung
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.756-761
    • /
    • 2006
  • Curcumin has been known for its anti-proliferative and apoptotic effects on several cancer cells. We examined the inhibitory effects of curcumin on cancer cell adhesion, motility, invasion and matrix metalloproteinase-9 (MMP-9) activity in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured with 0, 5, 10 or $20{\mu}M$ of curcumin. Curcumin significantly inhibited the adhesion of cancer cells to the fibronectin at $20{\mu}M$ and suppressed the motility and invasion of cancer cells at all concentrations. Also, the MMP-9 activity was inhibited by curcumin, but MMP-9 protein amounts were not affected. Our data indicate that curcumin inhibits motility, invasion and MMP-9 activity of MDA-MB-231 cells. Therefore, curcumin may contribute to the potential beneficial food component to prevent the cancer metastasis in human breast cancer.

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.

Loquat (Eriobotrya japonica) extracts suppress the adhesion, migration and invasion of human breast cancer cell line

  • Kim, Min-Sook;You, Mi-Kyoung;Rhuy, Dong-Young;Kim, Yung-Jae;Baek, Hum-Young;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.3 no.4
    • /
    • pp.259-264
    • /
    • 2009
  • We examined the inhibitory effects of loquat methanol extract on the adhesion, migration, invasion and matrix metalloproteinase (MMP) activities of MDA-MB-231 human breast cancer cell line. Cells were cultured with DMSO or with 10, 25, or 50 ${\mu}g/ml$ of loquat methanol extract. Both leaf and seed extracts significantly inhibited growth of MDA-MB-231 cells in a dose-dependent manner, although leaf extract was more effective. Adhesion and migration were significantly inhibited by loquat extracts in a dose-dependent manner. Loquat extract also inhibited the invasion of breast cancer cells in a dose-dependent manner and leaf extract was more effective than seed extract. MMP-2 and MMP-9 activities were also inhibited by loquat extract. Our results indicate that methanol extracts of loquat inhibit the adhesion, migration and invasion of human breast cancer cells partially through the inhibition of MMP activity and leaf extract has more anti-metastatic effects in cell based assay than seed extract. Clinical application of loquat extract as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.

Momordica cochinchinensis Seed Extracts Suppress Migration and Invasion of Human Breast Cancer ZR-75-30 Cells Via Down-regulating MMP-2 and MMP-9

  • Zheng, Lei;Zhang, Yan-Min;Zhan, Ying-Zhuan;Liu, Chang-Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1105-1110
    • /
    • 2014
  • Objective: Metastases and invasion are the main reasons for oncotherapy failure. Momordica cochinchinensis (Mu Bie Zi in Chinese) had been used for a variety of purposes, and shown anti-cancer action. In this article, we focused on effects on regulation of breast cancer cell ZR-75-30 metastases and invasion by extracts of Momordica cochinchinensis seeds (ESMCs). Methods: Effect of ESMCs on ZR-75-30 human breast cancer cells proliferation were evaluated by MTT assay and on invasion and migration by wound-healing and matrigel invasion chamber assays. Expression and protease activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blotting and gelatin zymography, respectively. Results: ESMC revealed strong growth inhibitory effects on ZR-75-30 cells, and effectively inhibited ZR-75-30 cell invasion in a dose-dependent manner. Western blot and gelatin zymography analysis showed that ESMC significantly inhibited the expression and secretion of MMP-2 and MMP-9 in ZR-75-30 cells. Conclusions: ESMC has the potential to suppress the migration and invasion of ZR-75-30 cancer cells, and it might prove to of interest in the development of novel inhibitors for breast cancer.

Protein tyrosine phosphatase controls breast cancer invasion through the expression of matrix metalloproteinase-9

  • Hwang, Bo-Mi;Chae, Hee Suk;Jeong, Young-Ju;Lee, Young-Rae;Noh, Eun-Mi;Youn, Hyun Zo;Jung, Sung Hoo;Yu, Hong-Nu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.533-538
    • /
    • 2013
  • The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy- 3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. However, BVT948 didn't block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9.

Inhibition of the Interleukin-11-STAT3 Axis Attenuates Hypoxia-Induced Migration and Invasion in MDA-MB-231 Breast Cancer Cells

  • Lim, Ji-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.391-396
    • /
    • 2014
  • Although interleukin-11 (IL-11) has been reported to be elevated in hypoxic tumors and has been associated with a poor prognosis in various cancers, little is known about its precise role in promoting metastasis in hypoxic tumors. In the present study, the molecular mechanism underlying the effects of IL-11 on MDA-MB-231 breast cancer cells migration and invasion in relation to metastasis under hypoxic conditions has been defined. Inhibition of IL-11 expression or function using small interfering RNA (siRNA) or a neutralizing antibody attenuated hypoxic MDA-MB-231 breast cancer cell migration and invasion through down-regulation of matrix metalloproteinases (MMPs) and activation of epithelial-to-mesenchymal transition (EMT) related gene expression. In addition, hypoxia-induced IL-11 increased STAT3 phosphorylation and STAT3 knockdown suppressed hypoxic MDA-MB-231 breast cancer cell invasion due to reduced MMP levels and reprogrammed EMT-related gene expression. These results suggest that one of the hypoxic metastasis pathways and the regulation of this pathway could be a potential target for novel cancer therapeutics.

Brazilin Inhibits of TPA-induced MMP-9 Expression Via the Suppression of NF-${\kappa}B$ Activation in MCF-7 Human Breast Carcinoma Cells

  • Kim, Byeong-Soo
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • Metastasis is the primary cause of from breast cancer mortality. Cell migration and invasion play important roles in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. NF-${\kappa}B$ is transcription factor important in the regulation of MMP-9, as the promoter of MMP-9 gene contains binding sites for NF-${\kappa}B$. Brazilin, an active component of sappan wood (Caesalpinia sappan), decreases TPA-induced MMP-9 expression and invasion in MCF-7 cells. Also, brazilin suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. Taken together, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by brazilin is mediated by the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells. This result suggest brazilin provide a potential therapeutic app roach for the treatment of breast cancer.

Anti-migration and anti-invasion effects of LY-290181 on breast cancer cell lines through the inhibition of Twist1

  • Jiyoung Park;Sewoong Lee;Haelim Yoon;Eunjeong Kang;Sayeon Cho
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.410-415
    • /
    • 2023
  • Breast cancer has become the most common cancer among women worldwide. Among breast cancers, metastatic breast cancer is associated with the highest mortality rate. Twist1, one of the epithelial-mesenchymal transition-regulating transcription factors, is known to promote the intravasation of breast cancer cells into metastatic sites. Therefore, targeting Twist1 to develop anti-cancer drugs might be a valuable strategy. In this study, LY-290181 dose-dependently inhibited migration, invasion, and multicellular tumor spheroid invasion in breast cancer cell lines. These anti-cancer effects of LY-290181 were mediated through the down-regulation of Twist1 protein levels. LY-290181 inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Therefore, our findings suggest that LY-290181 may serve as a basis for future research and development of an anti-cancer agent targeting metastatic cancers.