• Title/Summary/Keyword: Breast cancer MCF-7 cell

Search Result 436, Processing Time 0.028 seconds

Silibilin-Induces Apoptosis in Breast Cancer Cells by Modulating p53, p21, Bak and Bcl-xl Pathways

  • Pirouzpanah, Mohammad Bagher;Sabzichi, Mehdi;Pirouzpanah, Saeed;Chavoshi, Hadi;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2087-2092
    • /
    • 2015
  • Nowadays herbal-derived medicines are attracting attention as new sources of drugs with few side effects. Silibinin is a flavonoid compound with chemotheraputic effects on different cancers such as examples in the prostate, lung, colon and breast. In the present study, the cytotoxic effects of silibinin on MCF7 breast cancer cells were investigated. Apoptosis was determined by flow cytometry and the impact of silibinin on the expression of pivotal genes including Bak, P53, P21, BRCA1, BCL-X1 and ATM was analyzed. Treatment for 24h had a significant dose-dependent inhibitory effect on cell growth (p<0.05) with dose- and time- dependent induction of apoptosis (p<0.05). In addition, there were significant increases in BRCA1, ATM, Bak and Bcl-XL gene expression at the mRNA level with different concentrations of silibinin for 24 or 48 h (p<0.05). Taken together, the results suggest that silibinin inhibits the proliferation and induces apoptosis of MCF-7 cells by down-regulating Bak, P53, P21, BRCA1, BCL-Xl and thus may be considered as an effective adjuvant drug to produce a better chemopreventive response for the cancer therapy.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Synthesis and Evaluation of 2-[123I]iodoemodin for a Potential Breast Cancer Imaging Agent

  • Park, Jeong-Hoon;Kim, Sang-Wook;Yang, Seung-Dae;Hur, Min-Goo;Chun, Kwon-Soo;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.595-598
    • /
    • 2008
  • Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) is a natural chemotherapeutic compound with diverse biological properties including an antitumor activity. Emodin, a specific inhibitor of the protein tyrosine kinase, has a number of cellular targets in related to it. Its inhibition activity affects the mammalian cell cycle regulation in specific oncogene. Practically, it has been proven to inhibit HER-2/neu tyrosine kinase expressing breast cancer cells as an anticancer agent. 2-[123I]iodoemodin has been synthesized and evaluated human breast cancer cells (MDA-MB-231, MCF-7, fibroblast as a control) which express basal levels of HER-2/neu tyrosine kinase to investigate its suitability as a breast cancer imaging agent and 2-iodoemodin has been synthesized as a standard compound. The radiochemical yield of the 2-[123I]iodoemodin was about 72% and its radiochemical purity was over 97% after purification. The radioactivity of the 2-[123I]iodoemodin was increased in a time dependent manner in both cell lines and the ratio of MDA-MB-231 and MCF7 to fibroblast was 2.9 and 1.7, respectively.

Antiproliferative Activity of Marrubium persicum Extract in the MCF-7 Human Breast Cancer Cell Line

  • Hamedeyazdan, Sanaz;Fathiazad, Fatemeh;Sharifi, Simin;Nazemiyeh, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5843-5848
    • /
    • 2012
  • Aim: Developing antitumor drugs from natural products is receiving increasing interest worldwide due to limitations and side effects of therapy strategies for the second leading cause of disease related mortality, cancer. Methods: The antiproliferative activity of a methanolic extract from the aerial parts of Marrubium persicum extract was assessed with the MCF-7 breast cancer cell line using the MTT test for cell viability and cytotoxicity indices. In addition, antioxidant properties of the extract were evaluated by measuring its ability to scavenge free DPPH radicals. Moreover, the total phenolic and flavonoid content of the extract was determined based on Folin-Ciocalteu and colorimetric aluminum chloride methods. Results: The findings of the study for the antiproliferative activity of the methanolic extract of M. persicum showed that growth of MCF-7 cells was inhibited by the extract in a dose and time dependent manner, where a gradual increase of cytotoxicity effect has been achieved setting out on 200 ${\mu}g/mL$ concentration of the plant extract. The antioxidant assay revealed that the extract was a strong scavenger of DPPH radicals with an $RC_{50}$ value of 52 ${\mu}g/mL$. The total phenolic and flavonoids content of the plant extract was 409.3 mg gallic acid equivalent and 168.9 mg quercetin equivalent per 100g of dry plant material. Conclusion: Overall, M. persicum possesses potential antiproliferative and antioxidant activities on the malignant MCF-7 cell line that could be attributed to the high content of phenolics and flavonoids, and therefore warrants further exploration.

A Bacterial Metabolite, Compound K, Induces Programmed Necrosis in MCF-7 Cells via GSK3β

  • Kwak, Chae Won;Son, Young Min;Gu, Min Jeong;Kim, Girak;Lee, In Kyu;Kye, Yoon Chul;Kim, Han Wool;Song, Ki-Duk;Chu, Hyuk;Park, Byung-Chul;Lee, Hak-Kyo;Yang, Deok-Chun;Sprent, Jonathan;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1170-1176
    • /
    • 2015
  • Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains unclear. MCF-7 cells were treated with CK ($0-70{\mu}M$) for 24 or 48 h. Cell proliferation and death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Changes in downstream signaling molecules involved in cell death, including glycogen synthase kinase $3\beta$ ($GSK3\beta$), $GSK3\beta$, $\beta$-catenin, and cyclin D1, were analyzed by western blot assay. To block $GSK3\beta$ signaling, MCF-7 cells were pretreated with $GSK3\beta$ inhibitors 1 h prior to CK treatment. Cell death and the expression of $\beta$-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7 cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the $GSK3\beta$ signaling pathway in MCF-7 cells. CK inhibited $GSK3\beta$ phosphorylation, thereby suppressing the expression of $\beta$-catenin and cyclin D1. Our results suggest that CK induces programmed necrosis in MCF-7 breast cancer cells via the $GSK3\beta$ signaling pathway.

Methyl Linderone Suppresses TPA-Stimulated IL-8 and MMP-9 Expression Via the ERK/STAT3 Pathway in MCF-7 Breast Cancer Cells

  • Yoon, Jae-Hwan;Pham, Thu-Huyen;Lee, Jintak;Lee, Jiyon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jae-Wook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • Methyl linderone (ML), a cyclo-pentenedione, was isolated from the fruit of Lindera erythrocarpa Makino (family Lauraceae). This plant has well-known anti-inflammatory effects; however, the anti-cancer effects of ML have not yet been reported. Thus, in the present study we investigated the effects of ML on the metastasis of human breast cancer cells. We used 12-O-tetradecanoyl phorbol-13-acetate (TPA)-stimulated MCF-7 cells as the cell model to study the effects of ML on invasion and migration. ML was found to reduce the invasion and migration rate of TPA-stimulated MCF-7 cells. Moreover, it inhibited two metastasis-related factors, matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8), at the mRNA and protein expression levels, in TPA-treated MCF-7 cells. The mechanism by which ML exerted these effects was through the inhibition of translocation of activator protein-1 (AP-1) and signal transducer and activator of transcription-3 (STAT3), mediated via phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, our findings indicated that ML attenuated the TPA-stimulated invasion and migration of MCF-7 cells by suppressing the phosphorylation of ERK and its downstream factors, AP-1 and STAT3. Therefore, ML is a potential agent for the treatment of breast cancer metastasis.

Parkin Reduces Expression of Monocyte Chemotactic Protein-1 (MCP-1) in TNF-${\alpha}$-stimulated MCF7 Breast Cancer Cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Lee, In-Soo;Rhee, Ki-Jong;Kim, Yoon-Suk
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.261-265
    • /
    • 2011
  • Parkin is a putative tumor suppressor protein and its expression is frequently reduced or absent in several types of tumors. In this study, we examined the role of Parkin in mRNA expression of monocyte chemotactic protein-1 (MCP-1) in the breast cancer cell line MCF7. Expression of MCP-1 mRNA increased after TNF-${\alpha}$ treatment. However, overexpression of Parkin induced a decrease in expression of MCP-1 mRNA in TNF-${\alpha}$-stimulated MCF7. This decrease in MCP-1 mRNA by Parkin overexpression occurred in a dose- and time-dependent manner. Using a wound scratch assay, we found that Parkin overexpression in MCF7 cells also resulted in a decrease in cell migration. These results suggest that Parkin down-regulates MCP-1 synthesis leading to decreased migration of tumor cells. We suggest that one possible mechanism by which Parkin acts as a tumor suppressor is by inhibiting migration or metastasis of cancer cells.

Inhibitive Effects of Cotton Plant Sectional Extracts in Cancer Cell Lines (목화 부위별 추출물의 암 세포주 증식 억제 효과)

  • Moon, Gyoung-Il;Kim, Hyung-Woo;Jeong, Hyun-Woo;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.21 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Objectives : This study was carried out to investigate the inhibitive effects of cotton plant sectional extracts in cancer cell lines, Calu-6(human, Caucasian, lung, adenocarcinoma) and MCF-7(human, Caucasian, breast, adenocarcinoma). The incidence of cancer has been increasing even in korea due to the change of dietary life and westernization and becoming conspicuous as the disease threatening health. But cancer treatment have not been fully effective against the high incidence or low survival rate of most cancer. Methods : Calu-6 and MCF-7 cells were cultured and seeded in cell culture plates, respectively. And sectional extracts of cotton plant were treated to MCF-7 cells. Results and Conclusion : Sectional extracts of cotton plant showed no anti-proliferative effect on MCF-7 cells, but root and stem extracts showed strong anti-proliferative effects on Calu-6 cells. Fruit, leaf and flower extracts also showed anti-proliferative effects on Calu-6 cells but not so much like root and stem extracts. But seed extract showed no anti-proliferative effect on Calu-6 cells.

  • PDF

Differential Expression of HSP90β in MDA-MB-231 and MCF-7 Cell Lines after Treatment with Doxorubicin

  • Jokar, Fereshte;Mahabadi, Javad Amini;Salimian, Morteza;Taherian, Aliakbar;Hayat, Seyyed Mohammad Gheibi;Sahebkar, Amirhossein;Atlasi, Mohammad Ali
    • Journal of Pharmacopuncture
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2019
  • Background: Breast cancer is a complex, heterogeneous disease and one of the most common malignancies in women worldwide. The efficacy of chemotherapy as an important breast cancer treatment option has been severely limited because of the inherent or acquired resistance of cancer cells. The molecular chaperone heat shock protein 90 (HSP90) upregulated in response to cellular stress is required for functions such as conformational maturation, activation and stability in more than 200 client proteins, mostly of the signaling type. In this study, the expression of HSP90 isoforms including $HSP90{\alpha}$ and $HSP90{\beta}$ in breast cancer cell lines before and after treatment with doxorubicin (DOX) was assessed. Material and Methods: The cell cytotoxicity of DOX in MDA-MB-231 and MCF-7 cell lines was determined using the MTT assay. immunofluorescence and western blotting techniques were used to determine the expression of $HSP90{\beta}$ in the cell lines before and after DOX treatment. Immunofluorescence was also conducted to ascertain the expression of $HSP90{\alpha}$. Results: The MTT assay results showed that the MDA-MB-231 cells ($IC_{50}=14.521{\mu}M$) were more sensitive than the MCF-7 cells ($IC_{50}=16.3315{\mu}M$) to DOX. The immunofluorescence results indicated that the expression of $HSP90{\alpha}$ in both cell lines decreased after exposure to DOX. The western blot and immunofluorescence analyses showed that $HSP90{\beta}$ expression decreased in the MCF-7 cells but increased in the MDA-MB-231 cells after DOX treatment. Conclusion: The obtained results suggested that $HSP90{\alpha}$ and $HSP90{\beta}$ expression levels were reduced in the MCF-7 cells after exposure to DOX. In the MDA-MB-231 cells, $HSP90{\alpha}$ expression was reduced while $HSP90{\beta}$ was found to be overexpressed following DOX treatment.

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.