• Title/Summary/Keyword: Breakwater design

Search Result 205, Processing Time 0.022 seconds

Numerical Analysis on the Behaviors of the Breakwater Utilizing Buoyancy for Soft Ground (수치해석을 통한 연약지반용 부력식 기초 방파제의 거동 분석)

  • Yun, Hee-Suk;Jang, In-Sung;Kwon, O-Soon;Lee, Sun-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.93-103
    • /
    • 2008
  • For conventional gravity type offshore structures constructed on the soft ground, which is located on the western and/or southern Korea, the excessive consolidation settlements are caused by the self-weight of the structures and so additional ground treatment methods are generally needed. Several types of improved foundation systems utilizing buoyancy applicable to even the soft ground were introduced for economical and efficient design of the offshore structure. In this study, a series of numerical simulations on the consolidation and lateral behaviors of breakwaters with the improved foundation systems utilizing buoyancy were carried out. From the results of numerical simulations it is found that the foundation systems utilizing buoyancy are efficient for reducing the maximum consolidation settlements without reducing lateral safety.

Estimation of Partial Safety Factors and Target Failure Probability Based on Cost Optimization of Rubble Mound Breakwaters (경사식 방파제의 비용 최적화에 기초한 부분안전계수 및 목표파괴확률 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Burcharth, Hans F.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.191-201
    • /
    • 2010
  • The breakwaters are designed by considering the cost optimization because a human risk is seldom considered. Most breakwaters, however, were constructed without considering the cost optimization. In this study, the optimum return period, target failure probability and the partial safety factors were evaluated by applying the cost optimization to the rubble mound breakwaters in Korea. The applied method was developed by Hans F. Burcharth and John D. Sorensen in relation to the PIANC Working Group 47. The optimum return period was determined as 50 years in many cases and was found as 100 years in the case of high real interest rate. Target failure probability was suggested by using the probabilities of failure corresponding to the optimum return period and those of reliability analysis of existing structures. The final target failure probability is about 60% for the initial limit state of the national design standard and then the overall safety factor is calculated as 1.09. It is required that the nominal diameter and weight of armor are respectively 9% and 30% larger than those of the existing design method. Moreover, partial safety factors considering the cost optimization were compared with those calculated by Level 2 analysis and a fairly good agreement was found between the two methods especially the failure probability less than 40%.

Probabilistic Optimization for Improving Soft Marine Ground using a Low Replacement Ratio (해상 연약지반의 저치환율 개량에 대한 확률론적 최적화)

  • Han, Sang-Hyun;Kim, Hong-Yeon;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.485-495
    • /
    • 2016
  • To reinforce and improve the soft ground under a breakwater while using materials efficiently, the replacement ratio and leaving periods of surcharge load are optimized probabilistically. The results of Bayesian updating of the random variables using prior information decrease uncertainty by up to 39.8%, and using prior information with more samples results in a sharp decrease in uncertainty. Replacement ratios of 15%-40% are analyzed using First Order Reliability Method and Monte Carlo simulation to optimize the replacement ratio. The results show that replacement ratios of 20% and 25% are acceptable at the column jet grouting area and the granular compaction pile area, respectively. Life cycle costs are also compared to optimize the replacement ratios within allowable ranges. The results show that a range of 20%-30% is the most economical during the total life cycle. This means that initial construction cost, maintenance cost and failure loss cost are minimized during total life cycle. Probabilistic analysis for leaving periods of shows that three months acceptable. Design optimization with respect to life cycle cost is important to minimize maintenance costs and retain the performance of the structures for the required period. Therefore, more case studies that consider the maintenance costs of soil structures are necessary to establish relevant design codes.

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

Variation of Harbor Oscillations in Yeongil Bay (영일만 항만에서의 부진동 변화에 관한 연구)

  • Jeon Min-Su;Lee Joong-Woo;Jeong Jae-Hyun;Yang Sang-Yong;Jeong Young-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.533-539
    • /
    • 2006
  • Today the harbor oscillation problems are the most significant factor to design harbors serving the very large ships. Large vessels moored in the elastic hawsers at the coastal harbors are often displaced due to the resonance between the long period waves and mooring system. The cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes remarkable. The most significant harbor which is confronted with harbor oscillation problem in Korea is the Pohang New Port. Many cases of problems are being notified by the pilot association and local office of MOMAF. However, it is difficult to prevent the arrival of long waves musing oscillation within this harbor. Moreover, government already started new port plan at the mouth of Yeongil Bay without treating problems occurred in the Pohang New Port. This study deals with the variation of harbor oscillation due to the construction of 4.1km breakwater at the bay mouth and new port plan. Numerical method used are fairly standard form from the extended mild slope equation The obtained numerical results were compared with the field measurement from the previous study and this will bring a certain level of discussion and consideration of variation in the future port development.

Variation of Harbor Oscillations in Youngil Bay (영일만 항만에서의 부진동 변화에 관한 연구)

  • Jeon Min-Su;Lee Joong-Woo;Lee Seung-Chul;Jung Jae-Hyun;Hwang Ho-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.199-206
    • /
    • 2006
  • Today the harbor oscillation problems are the most significant factor to design harbors serving the very large ships. Large vessels moored in the elastic hawsers at the coastal harbors are often displaced due to the resonance between the long period waves and mooring system. The cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes remarkable. The most significant harbor which is confronted with harbor oscillation problem in Korea is the Pohang New Port. Many cases of problems are being notified by the pilot association and local office of MOMAF. However, it is difficult to prevent the arrival of long waves causing oscillation within this harbor. Moreover, Government already started new port plan at the mouth of YoungIl Bay without treating problems occurred in the Pohang New Port. This study deals with the variation of harbor oscillation due to the construction of 4.1km breakwater at the bay mouth and new port plan. Numerical method used are fairly standard form from the extended mild slope equation. The obtained numerical results were compared with the field measurement from the previous study and this will bring a certain level of discussion and consideration of variation in the future port development.

  • PDF

A Study on the Evaluation Index of Crown Height given Marine Environmental Factors and Ship Characteristics (해상 환경 및 선박 특성을 반영한 마루높이 평가지표에 관한 연구)

  • Kim, Seungyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.438-444
    • /
    • 2018
  • Korea has recently selected twenty-two ports for reinforcement breakwater installation of protection facilities, due to rise sea level caused by global warming and increase in the number of typhoon and tsunami. In addition, due to consistent enlargement of ship size, dredging for depth of water for large vessel's berthing and enlargement of berth is under construction. However, no definite construction plan for the reinforcement and lengthening of crown height, which has close relationship with the safe mooring of ships. In this study, domestic and foreign design criteria of crown height were analyzed, and the crown height evaluation index and evaluation method were developed by dividing it into environment and ship elements. In particular, in the case of ship evaluation index, each step was set up in 4 steps according to domestic and foreign regulations, weighted by each step, and the safety level of crown height was evaluated. As a result of the mooring safety simulation of the 100,000 ton cruise ship, the appropriate minimum crown height standard was derived to be 3 m above A.H.H.W. The results of this study are expected to be used as basic data to propose the crown height standard reflecting ship characteristics.

The Study of Wave, Wave-Induced Current in CHUNG-UI Beach (충의휴양소 전면 해수욕장의 파랑 및 해빈류에 관한 연구)

  • Chang, Pyong-Sang;Bae, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.142-149
    • /
    • 2019
  • In this study, the past erosion history and current status in the CHUNG-UI beach of Eulwang-dong, Jung-gu, Incheon-Si, South Korea were investigated and analyzed the wave with wave-induced current to investigate the causes of coastal erosion. As a result, the significant wave height ($H_{1/3}$) was in the range of 0.07~1.57 m and the mean value was 0.21 m. The maximum wave height ($H_{max}$) was in the range of 0.02-4.76m and the mean value was 0.27m. The vertical wave height and cycles were estimated through numerical model experiments of wave transformation. The 50-year frequency design wave height ranged from 0.82m to 3.75m. As a result of the experiment of wave-induced current, wave-induced current in the CHUNG-UI beach was decreased after the installation of the Detached breakwater and the Jetty. On the other hand, when the crest elevation was increased up to 5 m, there was no significant change, but when the crest elevation was increased to 8m, strong wave-induced current occurred around the submerged breakwaters due to lowered depth of water. In addition, the main erosion of the CHUNG-UI beach is due to the intensive invasion of the wave characteristics coming from the outer sea into the white sandy beach. The deformation of the wave centered on the front of the sandy beach caused additional longshore currents flowing parallel to the sandy beach and rip currents in the transverse direction, thus confirming that the longshore sediment was moved out of the front and out of the sea. The results of this study can be used as preliminary data for the recovery of the sand and the selection of efficient erosion prevention facilities.

Variation Characteristics of Wave Field around Three-Dimensional Low-Crested Structure (3차원저천단구조물(LCS) 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Bae, Ju Hyun;An, Sung Wook;Lee, Kwang Ho;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-198
    • /
    • 2019
  • In recent years, countries like Europe and Japan have been involved in many researches on the Low-Crested Structure (LCS) which is the method to protect beach erosion and it is regarded as an alternative to the submerged breakwaters, and compiled its results and released the design manual. In the past, studies on LCS have focused on two-dimensional wave transmission and calculating required weight of armor units, and these were mainly examined and discussed based on experiments. In this study, three-dimensional numerical analysis is performed on permeable LCS. The open-source CFD code olaFlow based on the Navier-Stokes momentum equations is applied to the numerical analysis, which is a strongly nonlinear analysis method that enables breaking and turbulence analysis. As a result, the distribution characteristics of the LCS such as water level, water flow, and turbulent kinetic energy were examined and discussed, then they were carefully compared and examined in the case of submerged breakwaters. The study results indicate that there is a difference between the flow patterns of longshore current near the shoreline, the spatial distribution of longshore and on-offshore directions of mean turbulent kinetic energy in case of submerged breakwaters and LCS. It is predicted that the difference in these results leads to the difference in sand movement.