• Title/Summary/Keyword: Breakdown lifetime

검색결과 70건 처리시간 0.029초

Effect of Conductor Radius of Polyesterimide- Polyamideimide Enameled Round Wire on Insulation Breakdown Voltage and Insulation Lifetime

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.146-150
    • /
    • 2015
  • Insulation breakdown voltage and insulation lifetime were investigated in straight lines or twisted pairs with polyesterimide-polyamideimide enameled round wires (EI/AIW ). The enamel thickness was 50 μm and the conducting copper radius was 0.50, 0.75, 1.09, and 1.50 mm, respectively. There were many air gaps in a twisted pair therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen's law. Insulation breakdown voltage and insulation lifetime were highest in the sample of 0.75 mm conductor radius, which was higher than those values for 0.50 mm or 1.09 and 1.55 mm.

절연재료의 수명예측을 위한 프로그램개발에 관한 연구 (A study on development of program for estimation the Lifetime of insulating materials)

  • 박성민;배덕권;정인재;박우현;이기식;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.699-702
    • /
    • 2000
  • Today, electrical machine is being large capacitor and EHV(Extra High Voltage) of power equipment is a need of high reliability of insulating matetials. Therefore, it is a need of fixed appraisement of lifetime to used data of breakdown. This paper studied a development of the program for estimation the lifetime of insullating materials and the long-time breakdown voltage by experimentation. The estimation program is based on the "Inverse Power Law", defined V$\^$n/t is constant. After gaining the life exponent n, it is mapping the long-time breakdown voltages. On the base of life exponent, the estimation of lifetime and usefulness of the insulation systems are possible, furthermore easy calculation is possible.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Winding Coil Prepared with Polyamideimide/Nanosilica Enamelled Wire

  • Park, Jae-Jun;Woo, Myung-Ha;Lee, Jae-Young;Hwang, Don-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.297-301
    • /
    • 2016
  • The effects of ambient temperature and diameter on the insulation lifetime of winding coils prepared with polyamideimide (PAI), flexural PAI (nanosilica 5 wt%) and anti-corona PAI (nanosilica 15 wt%) wires were investigated. The winding coils were made of enameled wire with enamel thickness of 30~50 μm. The thickness and width of the rectangular copper wires were 0.77~0.83 mm and 1.17~1.23 mm, respectively. The insulation breakdown lifetime decreased with increasing ambient temperature regardless of wire type and winding coil diameter under an inverter surge of 1.5 kV/20 kHz. The insulation breakdown lifetimes of φ5 mm winding coils at 150, 200, and 250℃ were 11.38, 5.19, and 4.22 min respectively, and those of φ10 mm winding coils at 150, 200, and 250℃ were 11.32, 5.79, and 4.57min respectively. The winding coil diameter had little effect on the insulation lifetime.

22.9[kV] 지중배전용 전력케이블의 전기적 특성과 파괴수명 고찰 (The Consideration of Electrical Characteristics and Breakdown Lifetime in 22.9[kV] Underground Distribution Power Cables)

  • 김충배;홍경진;임장섭;정우성;김상준;김태성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권9호
    • /
    • pp.628-633
    • /
    • 1999
  • Degradation diagnosis of XLPE insulated URD cables was accomplished through out new method, which was to be analyzed by non-electrical experiments and synthesized by degradation points. To supplement this method, It was also carried out using several electrical analyses. Tan$\delta$ had commonly a different tendency by means oftemperature and frequency and also appeared higher at the outer part rather than innerpart of insulator. PD-q increased generally in proportion to the applied voltage andshowed regular patterns in relation to the thickness of insulator. Breakdown voltageswere measured and breakdown lifetimes were predicted appling for Weibull distribution function. As a result, breakdown lifetime in failure cables was shorter up to$\fraction one-third$ times than that in general cables. It was very available to estimate cable degradation using above method, but it needs further study on XLPE insulated URD cables in order to improve reliability.

  • PDF

Lifetime Assessment for Oil-Paper Insulation using Thermal and Electrical Multiple Degradation

  • Kim, Jeongtae;Kim, Woobin;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.840-845
    • /
    • 2017
  • In this paper, in order to investigate the lifetime of oil-paper insulation, specimens were artificially aged with thermal and electrical multiple stresses. Accelerated ageing factors and equivalent operating years for each aging temperatures were derived from results of tensile strengths for the aged paper specimens. Also, the evaluation for the multi-stress aged specimens were carried out through the measurement of impulse breakdown voltage at high temperature of $85^{\circ}C$. The lifetimes of the oil-paper insulations were calculated with the value of 66.7 for 1.0 mm thickness specimens and 69.7 for 1.25 mm thickness specimens throughout the analysis of impulse BD voltages using equivalent operating years, which means that dielectric strengths would not be severely decreased until the mechanical lifetime limit. Therefore, for the lifetime evaluation of the oil-paper insulation, thermal aging would be considered as a dominant factor whereas electrical degradation would be less effective.

에폭시/고무 거시계면에서 장시간 절연파괴전압에 대한 연구 (Study on the Long Time Breakdown Voltage in the Macro Interface between Epoxy and Rubber)

  • 박우현;이기식
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.1003-1008
    • /
    • 2002
  • In this paper, the estimation of lifetime with the various conditions of the interface between toughened epoxy and rubber which are consisting materials of underground power delivery system has been studied. After the measurement of the short time AC interfacial breakdown strength on macro interfaces at room temperature, the breakdown time at several voltages were measured under the constant voltages lower than the short time breakdown voltage. The long time breakdown voltage was calculated by using Inverse Power Law. Two types of interfaces was studied. One was the interface between toughened epoxy and EPDM(Ethylene Prorylene Diene Terpolymer). The other was the interface between toughened epoxy and silicon rubber. Interfacial pressure and roughness of interfaces was determined through the characteristic of short time AC interfacial breakdown strength. Oil condition was no oiled, low viscosity oiled and high viscosity oiled. High viscosity oiled interface between Toughened epoxy and silicon rubber had the best lifetime exponent, 20.69. and the breakdown voltage of this interface after 30 years was evaluated 19.27㎸.

우주 자원 탐사를 위한 레이저 유도 플라즈마 분광분석법의 우주 환경에서의 특성 분석 (Characteristics of Laser-Induced Breakdown Spectroscopy (LIBS) at Space Environment for Space Resources Exploration)

  • 최수진;여재익
    • 한국항공우주학회지
    • /
    • 제40권4호
    • /
    • pp.346-353
    • /
    • 2012
  • 레이저 조사 시 발생되는 플라즈마를 성분 분석에 이용하는 Laser-Induced Breakdown Spectroscopy(LIBS)는 우주 자원 탐사에 적합한 실시간 성분 분석 기술이다. LIBS 플라즈마의 특성은 주위 압력의 영향을 크게 받는다. 본 연구에서는 다양한 물성치를 갖는 일곱 가지 원소(C, Ti, Ni, Cu, Sn, Al, Zn)의 지속시간(lifetime)이 760 - $10^{-5}$ torr의 압력 범위에서 분석되었다. 압력이 낮아짐에 따라 탄소와 티타늄의 lifetime은 감소하였고, 그 밖의 원소들은 1 torr의 압력에서 가장 오랜 시간동안 검출되었다. 원소별 lifetime 결과를 통하여 낮은 압력 하에서 플라즈마의 특성과 원소별 끓는점 및 전기음성도의 관계를 규명하였다.

파괴수명예측을 통한 지중배전용 전력케이블의 열화 진단 (Aging Diagnosis of Underground Distribution Power Cables Using Breakdown Lifetime Prediction)

  • 김충배;이정빈;임장섭;장영학;이진;김태성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.222-225
    • /
    • 1999
  • Degradation diagnosis of XLPE insulated URD cables was accomplished through out new method. which was to be analyzed non-electrical experiments and synthesized by degradation points. To supplement this method, it was also carried out using several electrical analyses. Breakdown voltages were measured and breakdown lifetimes were Predicted appling for Weibull distribution function. As a result, breakdown lifetime in failure cables was shorted up to 1/3 times than that in general cables. It was very available to estimate cable degradation using above method, but it needs further study on XLPE insulated URD cables in order to improve reliability.

  • PDF

절연재료 수명평가용 프로그램 개발 (Development of the Program for Estimation Lifetime of Insulating Materials)

  • 박성민;배덕권;이성일;오재한;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 유기절연재료 방전 플라즈마
    • /
    • pp.46-49
    • /
    • 2000
  • This paper studied development of the program for estimation the life time of insullating materials and the longtime breakdown voltage. First, short-time breakdown voltage of Epoxy and insulating oil was measured. Life exponent was gained from measurement of insulating breakdown time of the specimens. Life time is presumed from program. The estimation program is based on the "Inverse Power Law", defined $V^nt$ is constant. After gaining the life exponent n, it is mapping the longtime breakdown voltages. On the base of life exponent, the estimation the lifetime and usefulness of the insulation systems are possible, furthermore easy calculation is possible.

  • PDF

미소간극을 갖는 MEMS 방전 소자 제작 및 특성 연구 (A Novel discharging MEMS device & glow discharge properties)

  • 김주환;문형식;김영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.46-48
    • /
    • 2004
  • A micro-scale discharge device has been fabricated using MEMS technology and failure mechanisms during DC discharge are investigated for the microstructure. The failure of sustaining the plasma is mainly caused by either open or short of the micro-electrodes, both resulting from the sputtered metal atoms during the DC discharge. The glow discharge lifetime of the microstructures is found to depend on bias circuit scheme as well as the electrode structure. Based on the understanding of the failure mechanism, a novel microstructure is suggested to improve discharge lifetime and the longer lifetime is experimentally demonstrated. In addition to the failure mechanism, an electric breakdown between two electrodes with microns gap are studied using micromachined metal structures. The electrode gap is able to be accurately controlled by thickness of a sacrificial layer and the electric breakdown was measured while varying the gap from $2{\mu}m$ to $20{\mu}m$. The electric breakdown behavior was found to highly depend on the electrode material, which was not considered in Paschen's law.

  • PDF