• Title/Summary/Keyword: Break-down electric field

Search Result 5, Processing Time 0.023 seconds

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

Dynamic characteristics analysis of the magnetic actuator brake system (MASS) for emergency a car (비상 제동기능을 지닌 전자력 브레이크 시스템(MABS)에 대한 제안 및 동작특성해석)

  • Kang, Jong-Ho;Kim, Tae-Young;Choi, Sang-Min;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.68-70
    • /
    • 2006
  • This paper formulates the principle of the magnetic actuator break system (MASS) for emergency situation driving a car. When the exciting break system of a car is broken, MASS will be able to stop the car by the electric system. MASS controls the rotating wheel to slow down gradually while holding and laying the wheel down several ten times per second. We present the magnetic field and dynamic behavior analyses for the magnetic actuator break system using finite element method (FEM) associated with parameter, for calculating the displacement of the moving parts and the supplying current.

  • PDF

The Analysis of Axisymmetric Field Problem by C-1 FEM (C-1 유한요소법에 의한 축대칭장 문제의 해석)

  • Jang, I.K.;Kwak, D.S.;Shin, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.21-23
    • /
    • 1999
  • In this paper, the analysis of the electric field in the chamber of high voltage $SF_6$ GCB(Gas Circuit Breaker) is presented by using C-1 FEM. For this purpose, pre-processing program and post-processing program were developed for axisymmetirc 3 dimensional analysis and the electric field in cylindric chamber was analyzed. Important problem is that electric analysis must be considered coronal due to break-down of $SF_6$ when it is cutted off. To solve this problem, a procedure is needed to verify that the solution of Poisson's equation for scalar potential satisfy charge continuos condition because of using first order element os not satisfy the electric continuous condition, C-1 FEM is introduce to obtain electirc potential and electric field at the same time. Analysis of the distribution of electric field on model was done. It is confirmed that the developed program in this paper applicable to design and to analyze of characteristics in total program as electric characteristics analysis routine.

  • PDF

A Study on the Appropriate Tunnel Bracket using in Korea Peninsula (국내 기후와 환경에 적합한 터널브래킷 선정에 관한 연구)

  • Jang, Kwang-Hun;Seo, Ki-Bum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1008-1012
    • /
    • 2014
  • Tunnel bracket is used in railway tunnel area in order to maintain insulation. Insulator performance evaluation test is proceeded refer to IEC 61109 but it is impossible to reflect all the field condition where insulator installed. Korea has clear four season in climatic condition and peninsula with lots of mountain in geomorphology condition. Tunnel bracket material which used in korea are butyl rubber, polymer and silicone. Most of them were installed without any internal climatic and geomorphology condition. According to the KORAIL operation data most of the insulator break down occurs in tunnel. So interval of inspection period is shorter then any other insulator and lots of maintenance cost incurs. Most major railway advanced country such as germany and japan maintain tunnel bracket with their own experience. For example visual inspection carried out with in one or two years and detailed inspection carried out between three to five years. This paper analyzed materials and shapes of tunnel bracket to in order to find optimized one in korea peninsula. Proposed bracket were tested under regulation and experience field data. Finally it was installed at the field and evaluated until now.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF