• Title/Summary/Keyword: Break area

Search Result 314, Processing Time 0.039 seconds

Management Plan for Humanistic and Ecological Characteristics of Suweol Village Forest in Tongyoung (통영 수월숲의 인문학적 특성 및 생태적 특성을 고려한 관리방안)

  • Lim, Eui-Jea;Lee, Soo-Dong;Kim, Mi-Jeong
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.85-98
    • /
    • 2013
  • In order to propose effective conservation management plan, this study verified ecological characteristics, humanities and Social characteristics. The research site is private property which is owned belonging to the Kim's of Gimhae that have long history. The study site is more than a thousand years old and was created for protecting from typhoon. There held the religious ritual what is called Dongsinje until 1960s. There have been protected and managed by the villagers. As the results of analysis, the area of windbreak are $12,392.69m^2$. The windbreak is dominated old years deciduous broad-leaved tree such as Zelkova serrata, Celtis sinensis, Aphananthe aspera. Around there were farmlands(52.1%), urbanized area(26.3%), forest area(16.6%). The vegetation communities of windbreak were classified by considering the dominant species and current status of forest. The forest types are following as; A. aspera community(I) which is using less pressure, Platycarya strobilacea-Carpinus coreana-Z. serrata community(II). Z. serrata community(III) which is using high pressure, Z. serrata-A. aspera community(IV), Z. serrata community(V) which is damaged under canopy trees. The windbreak was in good condition whereas, there were concerns the some wrong status was being undermined such as the wrong forest restoration projects in the past, the trails that is penetrating inside the forest, building up education facilities. Therefore, in order to restore the value of windbreak what is so called Suwol forest, we should improve the problems of forest ecosystem such as wrong management, forest fragmentation by facilities and decline in forest by lack of growing the next generation trees. In addition, we should remove excessive resting facilities and lead to passive use of forest. to improve the way of wrong management, moreover, we should close off he trails that is penetrating inside the forest for improving fragmentation. We should restore vegetation restoration and fostering the next generation trees for forest ecosystem. In order to restore unique of histo-cultural and ecological forest landscape, the next generation trees should be grown up that is the dominant species in Suwol forest. Moreover, as a results of comparing the between good vegetation communities and damaged vegetation communities, it is necessary to complementary planting for demeged vegetation communities, therefore there needs to 10.8 under canopy trees, 79.7 shrubs.

Distribution and properties of intertidal Surface Sediments of Kyeonggi Bay, West Coast of Korea (경기만 조간대 표층퇴적물의 분포와 특성)

  • LEE, CHANG-BOK;YOO, HONG-RHYONG;PARK, KYUNG-SOO
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.277-289
    • /
    • 1992
  • Kyeonggi Bay, a macrotidal coastal embayment in the Yellow Sea coast of central korea, is fringed by vastly developed tidal flats. About 400 surface sediment samples were collected from the intertidal and subtidal zones of Kyeonggi Bay for a study of the sediment distribution pattern and the surface sediment characteristics of this environment. The kyeonggi Bay surface sediment becomes progressively finer in the shoreward direction, from offshore sand to shoreward silty sand and sandy silt. This shoreward-fining trend is repeated again on the tidal flat and, as a consequence, a grain-size break occurs near the low-water line which separates the intertidal area from the subtidal one. The intertidal and subtidal sediments differ from each other in textural characteristics such as mean grain size and skewness and this can be interpreted to result from differences in hydraulic energy and morphology between the two environments. The mineral and chemical compositions of the Kyeonggi Bay sediments are largely controlled by the sediment grain size. Smectite was nearly absent in the clay mineral assemblage of Kyeonggi Bay sediment. The contents of Co, Cu and Ni were high in the Banweol tidal flat, which suggests a continuous process of accumulation of these metals. the intertidal environment appears to respond rapidly to artificial coastal modifications, the effects of which should be taken into consideration when planning a dam construction or coastal reclamation.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

Improvement of wireless communications environment of Web-pad on board Yard tractor in container terminal use convergence technology (융복합 기술을 이용하는 컨테이너 항만에서 야드 트랙터에 탑재된 웹-패드의 무선통신 환경 개선 방안)

  • Hong, Dong-Hee;Kim, Chang-Gon
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.281-288
    • /
    • 2015
  • The container terminals use convergence technology that exchange information for cargo work, using wireless communication between the TOS(Terminal Operations System) and the handling equipments(CC, TC, YT). But if the container cargoes pile up high in the container yard, delayed cargo work and cargo working list information error happen because of communication dead spots(the worker can not receive the information) which wireless communication is disconnected. At this time the driver of the yard tractor(YT) must be able to recognize the communication state. If then, delayed cargo work and cargo working list information errors that occur in the shaded communication area can be avoided, and can process the delayed work due to wireless communication break. In this project, we have built wireless communication environment to increase the efficiency of the loading and unloading operations which the operator can respond actively, when the work is delayed and work orders result in errors. That is, the flow of the wireless communication module has been changed.

A Research on the Navigation of Northern Sea Route According to Safety of Vessel and Crews (선박 및 선원의 인명 안전을 고려한 북극해 항로 운항 연구)

  • Kim, Won-Ouk;Youn, Dae-Gwun;Park, Woe-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Arctic Ocean has rapidly melted due to global warming, by this, commercial ship has been operating through the area. Reason to develop the Northern Sea Route(NSR) even in extreme conditions, the distance than the existing route is shortened, which bring economic benefits. For these reason, the International Maritime Organization(IMO) established safety standards of the Arctic navigation(Polar Code) in order to ensure safe operation in the Northern Sea Route. In this study, it has been described ice types and safety standards of Artic vessel what officer needs to know for safe navigation on the Arctic Ocean. And It was verified by simulation the theoretical knowledge for the safe operation of the Arctic vessel. As a result, it was found that ship needs to reduce speed and analyze ice for safe operation before enter into the ice, it is necessary to enter at right angle to break ice safety and efficiently. Also according to the result of the simulation of navigation entering in ice channel(Lead), it was difficult to change course, it is believed that require emergency training for passing Vessel. In the future, It shall be analyzed precisely under various conditions of scenario.

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

CHANGES IN ELECTROPHYSIOLOGICAL PROPERTIES OF NEUROBIOTIN-LABELED PYRAMIDAL CELLS OF HIPPOCAMPUS RECORDED IN VIVO (마취된 흰쥐 해마신경세포에서 Neurobiotin 이온주입으로 인한 신경세포의 생리적 특성의 변화)

  • Lee, Hye-Sook;Lee, Maan-Gee-G.;Kim, Young-Jin;Choi, Byung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.218-231
    • /
    • 1999
  • Pyramidal cells in the hippocampal CA area were recorded from and filled with neurobiotin in anesthetized rats. The extent of their dendrites and the electropharmacological properties of membrane as well as the effect before and after neurobiotin injection were examined. Pyramidal cells had a high resting membrane potential, a low input resistance, and a large amplitude action potential. A afterhyperpolarization was followed a single action potential. Most pyramidal cells did not display a spontaneous firing. Pyramidal cell displayed weak inward rectification and anodal break excitation in response to negative current injection into the cell. Membrane properties of recorded neurons before and after neurobiotin injection with consecutive current injection were compared. Some properties were significantly increased after labelling(P>0.05); the duration and amplitude of sustained AHP, input resistance, and the number of action potentials for simultaneous intra- and extracellular stimulations. Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar dendrite processes ramifying in stratum lacunosum-moleculare, radiatum, and oriens.

  • PDF

A Case Study on Economic Analysis of a Solar Water Heating System and a Ground Source Heat Pump System Applied to a Military Building (군 복지시설의 지열시스템과 태양열시스템 경제성 평가 사례 연구)

  • Lee, Jong-Chan;Park, Young-Ho;Lee, Ghang;Lee, Sang-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.4
    • /
    • pp.111-118
    • /
    • 2009
  • This study is to analyze the performance of SWH(Solar Water Heating) and GSHP(Ground Source Heat Pump) systems by evaluating their energy efficiency and LCC(Life Cycle Cost) as being applied to the OO hall as a selected building in the Army. The OO hall, used as bathrooms, dining rooms, accommodations and offices, has reinforced concrete structure system with three floors above the ground and one underground, and its total floor area is approximately 2,917$m^2$. Two energy simulations are conducted to predict the yearly cooling and heating energy of the selected building: One is for analysis of an air-conditioning energy consumption using the e-Quest program, and another is for two new-renewable energy facilities as a water heating source using the RETScreen. The installed capacity of two new-renewable energy facilities is determined according to the 5% level of total standard construction cost. As a briefly result, SWH system is more energy-effective than GSHP system. Considering the break-even point, it is expected that SWH can take only 3 years 11 months to pay for itself in savings while the investment of GSHP can be recovered in more than 16 years 6 months.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.