• Title/Summary/Keyword: Break Process

Search Result 423, Processing Time 0.028 seconds

A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume (가연성 배기덕트-흄 화재위험성 평가에 관한 연구)

  • Yoon, Yeo-Song;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

Progressive Process planning and die design to improve the formability in fine blanking of the lock plate in car seatbelt (자동차 좌석벨트의 록 플레이트의 정밀타발 시 성형성 향상을 위한 프로그레시브 공정 및 금형 설계)

  • Lee, Sang-Pill;Min, Byung-Hyun;Lee, Kwan-Young;Ko, Young-Jun;Kim, Chul;Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.84-92
    • /
    • 2013
  • This study improves the formability in fine-blanking the lock plate of car seat belts using a low carbon steel(SM35C) plate. The optimal die design for the forming process is proposed using rules for process planning based on theories and field experiences. The optimal design is analyzed using commercial finite element software in order to solve the fracture problems in the extrusion process. Through the improved layout based on the FEM results, the fracture of the extruded part and the roll over problem are solved. Furthermore, it is demonstrated through the shown from experiments that the extruded part does not break in the modified die.

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Shuchismita;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1138-1142
    • /
    • 2011
  • Kinetic studies for the reactions of Y-aryl phenyl chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = 3-Ph, while the Hammett plots for substituent Y variations in the substrates are biphasic concave downwards (and partially upwards) with a break point at Y = H. The signs and magnitudes of the cross-interaction constant (${\rho}_{XY}$) are strongly dependent upon the nature of substituents, X and Y. The proposed mechanism is a stepwise process with a rate-limiting step change from bond breaking with the weaker electrophiles to bond formation with the stronger eletrophiles. The nonlinear free energy correlations of biphasic concave upward plots for substituent X variations in the nucleophiles are rationalized by a change in the attacking direction of the nucleophile from a backside with less basic pyridines to a frontside attack with more basic pyridines.

Soyprotein Fiber Formation (대두 단백섬유의 제조에 관한 연구)

  • Byun, Si-Myung;Kwon, Jong-Hoon;Kim, Chul-Jin;Lee, Yang-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.143-150
    • /
    • 1978
  • In our previous report (Korean J. Food Sci. Technol., 9, 123. (1977), functional properties of soyprotein isolates prepared from defatted soybean meal were studied. Using those properties soyprotein fibers, which may be acceptable as meat analogs, were prepared with protein spinning apparatus. Soyprotein can be converted into the suitable form for the spinning by denaturation with alkali (0.6%) and continuous fibers were spun by extruding spinning solution into an 20% NaCl-1 N acetic acid coagulating bath. The process for producing soyprotein fibers on a bench scale was described and break strength, break elongation and textural parameters of the fibers formed were evaluated. The possible scheme of formation of soyprotein fibers was discussed.

  • PDF

Ycs4 is Required for Efficient Double-Strand Break Formation and Homologous Recombination During Meiosis

  • Hong, Soogil;Choi, Eui-Hwan;Kim, Keun Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1026-1035
    • /
    • 2015
  • Condensin is not only responsible for chromosome condensation, but is also involved in double-strand break (DSB) processing in the cell cycle. During meiosis, the condensin complex serves as a component of the meiotic chromosome axis, and mediates both proper assembly of the synaptonemal complex and DSB repair, in order to ensure proper homologous chromosome segregation. Here, we used the budding yeast Saccharomyces cerevisiae to show that condensin participates in a variety of chromosome organization processes and exhibits crucial molecular functions that contribute to meiotic recombination during meiotic prophase I. We demonstrate that Ycs4 is required for efficient DSB formation and establishing homolog bias at the early stage of meiotic prophase I, which allows efficient formation of interhomolog recombination products. In the Ycs4 meiosis-specific allele (ycs4S), interhomolog products were formed at substantial levels, but with the same reduction in crossovers and noncrossovers. We further show that, in prophase chromosomal events, ycs4S relieved the defects in the progression of recombination interactions induced as a result of the absence of Rec8. These results suggest that condensin is a crucial coordinator of the recombination process and chromosome organization during meiosis.

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

Is the Fama French Three-Factor Model Relevant? Evidence from Islamic Unit Trust Funds

  • Shaharuddin, Shahrin Saaid;Lau, Wee-Yeap;Ahmad, Rubi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.21-34
    • /
    • 2018
  • The study tests the Fama and French three-factor model by using the newly created Islamic equity style indices. Based on a dataset from May 2006 to April 2011, the three-factor model is tested based on returns of Islamic unit trust funds using the Generalized Method of Moments (GMM) methodology. The sample period is also divided between periods before and after the Global Financial Crisis in August 2008 to test for robustness, and the Bai and Perron (2003) multiple structural break test was used to determine the structural break in the series. The analysis shows that the Fama and French model is valid for Islamic unit trust funds before and after the collapse of Lehman Brothers. The result further indicates the reversal of size effect. As for trading strategies, value funds outperform growth funds by annualized 3.13 percent for the full period. During pre-crisis period, value funds perform better than growth funds while in post-crisis, size factor yields better return than other strategies. As policy suggestion, fund managers need to be aware of the reversal of size effect, and they need to ensure a more transparent stock selection process so that investors can make an informed decision in their asset allocation.

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

Evaluation of Folding Properties of Paperboard with Folding Angle and Rate (접힘 각도 및 속도에 따른 판지의 접힘 특성 평가)

  • Youn, Hye-Jung;Chin, Seong-Min;Ryu, Jae-Ho;Kwon, Hyun-Seung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.3
    • /
    • pp.30-35
    • /
    • 2007
  • Folding performance is very important in box manufacturing process using paperboard. To evaluate the folding performance of various paperboards, we measured the folding moment and folding behavior at the different folding angle and rate conditions. When linerboard with grammage of $300\;g/m^2$ was folded up to $90^{\circ}$, the compression break and delamination of sheet were observed. The maximum folding moment was little affected by folding angle, but it was increased logarithmically with folding rate. And the effect of paperboard thickness was significant. The maximum folding moment of MD sample was higher than one of CD sample by 40%.