• Title/Summary/Keyword: Brassica rapa ssp

Search Result 65, Processing Time 0.024 seconds

Effects of Soil pH on Nutritional and Functional Components of Chinese Cabbage (Brassica rapa ssp. campestris) (토양 pH가 배추(Brassica rapa ssp. campestris)의 영양성분과 기능성분에 미치는 영향)

  • Lee, Jo-Eun;Wang, Pingjuan;Kim, Gyung-Yun;Kim, Sung-Han;Park, Su-Hyoung;Hwang, Yong-Soo;Lim, Yong-Pyo;Lee, Eun-Mo;Ham, In-Ki;Jo, Man-Hyun;An, Gil-Hwan
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • The contents of functional and nutritional components of 13 cultivars of Chinese cabbage (CC, $Brassica$ $rapa$ subspecies $campestris$) were analyzed to compare the effects of soil pH of the greenhouse (pH 6.2) and outdoor (pH 7.6). The CC cultivated on pH 6.2 (CC-6.2) soil contained significantly increased amounts (2-9 fold) of pectin, crude protein, vitamin C and vitamin E compared to the counterpart (CC-7.6). The contents of ash and the minerals (Ca, Fe, Na, and Mn) were also significantly increased in CC-6.2. However, CC-6.2 contained 40-50% lower contents of reducing sugars, cellulose and crude fat than CC-7.6. CC-7.6 contained more glucosinolates, gluconasturtiin (18.33 vs. $1.16nmol{\cdot}g^{-1}$ wet weight) and gluconapin (145 vs. $2nmol{\cdot}g^{-1}$ wet wt), than CC-6.2. In conclusion, CC-6.2 had an improved texture (high pectin and low cellulose) and nutritional value (high in protein, Ca, Fe, vitamin C, and E), whereas the CC-7.6 had better taste (high in reducing sugars) and anticancer functionality (high in glucosinolates).

Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1

  • Zang, Yun-Xiang;Kim, Jong-Hoon;Park, Young-Doo;Kim, Doo-Hwan;Hong, Seung-Beom
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.472-478
    • /
    • 2008
  • Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines overexpressing CYP79F1 displayed phenotypes different from wild type with respect to the stem thickness as well as leaf width and shape. Glucosinolate contents of the transgenic plants were compared with those of wild type. In the MAM1 line M1-1, accumulation of aliphatic glucosinolates gluconapin and glucobrassicanapin significantly increased. In the CYP83A1 line A1-1, all the aliphatic glucosinolate levels were increased, and the levels of gluconapin and glucobrassicanapin were elevated by 4.5 and 2 fold, respectively. The three CYP79F1 transgenic lines exhibited dissimilar glucosinolate profiles. The F1-1 line accumulated higher levels of gluconapoleiferin, glucobrassicin, and 4-methoxy glucobrassicin. However, F1-2 and F1-3 lines demonstrated a decrease in the levels of gluconapin and glucobrassicanapin and an increased level of 4-hydroxy glucobrassicin.

Characterization of the Gene Encoding Radish (Raphanus sativus L.) PG-inhibiting Protein

  • Hwang, Byung-Ho;Kim, Hun;Lim, Sooyeon;Han, NaRae;Kim, Jongkee
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.299-307
    • /
    • 2013
  • A radish (Raphanus sativus L.) polygalacturonase-inhibiting protein (PGIP) gene was cloned and compared to the PGIP gene (BrPGIP2) from Chinese cabbage (Brassica rapa ssp. pekinensis) in order to gain more information on controlling a disease and improving produce quality. To clone the radish PGIP gene, primers were designed based on conserved sequences of two PGIP genes (BnPGIP1 and BnPGIP2) from rape (B. napus L. ssp. oleifera), Chinese cabbage and Arabidopsis thaliana. PCR cloning was performed with cDNA from the stigma of radish 'Daejinyeoreum' as a template to confirm DNA fragments which were about 600 base pair in size. Sequence analysis revealed 84.1% homology with BrPGIP2 and 70.1% with BnPGIP1. DNA walking was conducted to confirm the open reading frame of 972 bp, and the gene was named RsPGIP1. RsPGIP1 consisting with 323 amino acids (aa) has a high leucine content (54/323) and contains 10 leucine-rich repeat domains, as do most BrPGIPs of Chinese cabbage. The gene expression of RsPGIP1 was induced by abiotic stresses and methyl jasmonate. It showed enrichment in the stigma and the primary root than a leaf. Cloning RsPGIP1 will aid to further apply practices on postharvest quality maintenance and disease control of the root.

The Expression of a Cytosolic Fructose-1,6-Bisphosphatase, a Key Enzyme in Sucrose Biosynthesis, Gene was Diurnally Fluctuated and Increased in Cold Acclimated Leaves of Chinese Cabbage

  • Leen, Jeong-Yeo;Song, Ha-Young;Lim, Yong-Pyo;Hur, Yoon-Kang
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2006
  • Chinese cabbage (Brassica rapa ssp. pekinesis) is one of the most important vegetable crops in korea and other East Asian countries. Cytosolic fructose-1,6-bisphospha-tase (cytFBPase) is a key enzyme in sucrose biosyn-thesis, which controls the sucrose levels as well as the productivity at plants. The Chinese cabbage cytFBPase gene, BrFBPase, encodes the 340 amino acid polypep-tide, giving a theoretical molecular weight of 37.2 kD and a isolectric point of 5.4. BrFBPase showed high sequence identity with Brassica homologs and its functional domains, such as 12,6P$_2$ binding site or active site and F6P binding site, were highly conserved in diverse sources of organisms. Although the genome of Chinese cabbage seemed to be triplicated, BrFBPase appears to be a single copy gene. The expression of BrFBPase was examined at transcript and protein levels under various conditions. BrFBPase expression was observed only in photosynthetic source tissue, not in sink tissue. The expression was slightly higher during the day than at night, and it showed a diurnal cycle with circadian rhythmicity. Short-term exposure to low temperature inhibited the expression of the BrFBPase, while long-term exposure increased the expression, supporting that sugar levels are high in late autumn when temperature are low.

Evaluation of Clubroot Resistance in Chinese Cabbage and Its Inheritance in the European Turnip Line 'IT033820', a New Genetic Resource

  • Cho, Kang Hee;Kim, Ki Taek;Park, Suhyung;Kim, Su;Do, Kyung Ran;Woo, Jong Gyu;Lee, Hee Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.433-441
    • /
    • 2016
  • Clubroot caused by the protist Plasmodiophora brassicae is one of the most destructive diseases of Brassica crops. Developing Chinese cabbage cultivars with durable clubroot resistance (CR) is an important goal of breeding programs, which will require new genetic resources to be identified and introduced. In this study, we evaluated resistance to P. brassicae race 4 using 26 Chinese cabbage (B. rapa ssp. pekinensis ) cultivars compared to the clubroot-susceptible Chinese cabbage inbred line 'BP079' and the clubroot-resistant European turnip (B. rapa ssp. rapifera ) inbred line 'IT033820'. No symptoms of clubroot disease were found in 'IT033820' infected with P. brassicae race 4, whereas the Chinese cabbage cultivars exhibited disease symptoms to various degrees. The Chinese cabbage cultivars that were reported to be clubroot-susceptible were susceptible to P. brassicae race 4; however, seven of the 20 cultivars reported to be clubroot-resistant were susceptible to this race of P. brassicae to varying degrees. Resting spores of P. brassicae were abundant within the infected root tissues of 'BP079', as revealed by light microscopy and scanning electron microscopy (SEM), but they were not detected in root tissues of 'IT033820'. Although resting spores were not detected by light microscopy in root tissues of the clubroot-resistant Chinese cabbage cultivar 'Kigokoro 75', a few spores were observed by SEM. The $F_1$ hybrids from a cross between 'IT033820' and 'BP079' showed no disease symptoms, and all $BC_1P_1$ progenies from a cross between the $F_1$ hybrid and 'IT033820' exhibited a resistance phenotype. In the $BC_1P_2$ population from a cross between the $F_1$ hybrid and 'BP079', this trait segregated at a ratio of 3(R):1(S) (${\chi}^2=1.333$, p = 0.248) at a 5% significance level. Inoculated $BC_1P_2$ plants were either highly resistant or highly susceptible to the pathogen, indicating that the CR to race 4 of P. brassicae carried by 'IT033820' is dominant. In the $F_2$ population, this trait segregated at a ratio of 15(R):1(S) (${\chi}^2=0.152$, p = 0.696) at a 5% significance level, suggesting that CR in 'IT033820' is mainly controlled by two dominant genes. Therefore, 'IT033820' represents a promising genetic resource for developing durable CR breeding lines in Chinese cabbage.

Effect of Exogenous Application of Sodium Nitroprusside on Alleviation of Low Temperature Stress in Kimchi Cabbage (Brassica rapa ssp. pekinensis) (Sodium Nitroprusside 처리가 배추의 저온 스트레스 경감에 미치는 영향)

  • Jinhyoung Lee;Seunghwan Wi;Hyejin Lee;Sanggyu Lee;Minseo Kang;Taeyang Kim;Seonghoe Jang;Heeju Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7℃) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Vitamin contents and antioxidant characteristics of red and gold kimchi cabbages (Brassica rapa. L. ssp. pekinensis)

  • Kang-Hee Lee;Seung-min Oh;Won-Ho Hong;Jiyeon Chun
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.247-261
    • /
    • 2023
  • Kimchi cabbage is widely consumed in Korea, with the popularity of this pickled vegetable dish growing internationally due to its health benefits. In this study, the physical (size, color), functional (antioxidant activity, total polyphenol, and flavonoid content), and nutritional (water- and fat-soluble vitamins) characteristics of two new kimchi cabbage varieties, namely red and gold kimchi cabbages (RKC and GKC, respectively), were analyzed and compared with those of the common kimchi cabbage (CKC). There were no significant differences in the thickness or length of the three kimchi cabbages, although RKC had the narrowest outer leaves among the three varieties (11.94 cm). Regarding chromaticity, yellowness was highest in GKC (29.86), whereas redness was highest in RKC (9.31). Furthermore, RKC had the highest recorded vitamin B6 and B9 (1,288.5 ㎍/100 g and 776.7 ㎍ dietary folate equivalent/100 g, respectively). On the other hand, the fat-soluble vitamins vitamin A (β-carotene) and K (Phylloquinone) were both highest in GKC (907.1 ㎍/100 g and 712.2 ㎍/100 g, respectively). Generally, all kimchi cabbage samples contained high levels of vitamin E (1.8-4.9 mg α-tocopherol equivalent/100 g). RKC attained the highest antioxidant activity and total polyphenol and total flavonoid contents among the three kimchi cabbages. These results show that gold and red kimchi cabbage can be used as raw materials in the food-processing industry.

Effect of pretreatment conditions on quality characteristics and antioxidant activity in pak choi (Brassica rapa L. ssp. chinensis)

  • Jin-Hee Choi;Hyun-do Ahn;Hae-Yeon Choi
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.969-982
    • /
    • 2023
  • This study evaluated the impact of blanching pak choi stems and leaves in various solutions (distilled water, 2% NaCl, and 2% citric acid) at 100℃ on their quality characteristics. The highest stem heating loss was observed in the sodium chloride solution (S-NB) at 15.10% (p<0.001), and the highest leaf heating loss was in L-NB at 11.44% (p<0.001). No significant variation was found in the moisture content of both stems and leaves. Relative to the control, the L value (lightness) of the stem decreased while the b value (yellowness) increased (p<0.05). In the leaves, the a value (redness/greenness) and b value increased in L-CB, whereas they decreased in other groups (p<0.05). S-NB exhibited the highest true retention (TR) of total polyphenol content (TPC) in stems (p<0.01) and the highest TR of total flavonoid content (TFC) as well (p<0.001). For leaves, the highest TR of TPC and TFC was in L-WB (p<0.001). In terms of antioxidant activity, S-NB in stems and L-WB in leaves showed the highest scavenging activity measured by DPPH and ABTS+ assays (p<0.001). Microorganisms were absent in all pretreatment groups but present in the control. The results suggest that blanching pak choi stems in 2% NaCl solution and leaves in water optimally preserves biologically active compounds and nutrients.

Effects of different nitrogen fertilizer applications on growth of Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Jin-Hyuk Chun;Yun-Gu Kang;Yong-Jun Yu;Jae-Han Lee;Yeo-Uk Yun;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.709-718
    • /
    • 2022
  • Nitrogen (N) is a vital element in growing crops and is essential for improving the yield and quality of crops. Thus, N fertilizer is the most widely used fertilizer and the primary N input source in soil-crop systems. Inorganic fertilizers such as urea are known to improve crop productivity and increase soil fertility. However, application with excessive amounts can interfere with crop growth and accelerate soil acidification. For these reasons, the use of organic fertilizers, which mainly contain organic nitrogen, has gradually increased worldwide. Therefore, this study evaluated the effects of N fertilizer on the growth of Chinese cabbage including its functional compounds glucosinolates (GSLs). For the cultivation of Chinse cabbage, inorganic fertilizer was used for urea, and organic fertilizers were divided into conventional and biochar-based fertilizers. The growth parameters of Chinese cabbage treated by organic fertilizers was better than those of the inorganic fertilizers. Additionally, it was found that their co-application was more efficient. However, their GSL contents were lower with the application of the organic fertilizers. The characteristics of the experimental soil also changed according to the type, amounts and co-application of fertilizers. Therefore, this study presents the basis for an eco-friendly method that can increase the functionality and productivity of Chinese cabbage compared to conventional cultivations.