DOI QR코드

DOI QR Code

Effect of Exogenous Application of Sodium Nitroprusside on Alleviation of Low Temperature Stress in Kimchi Cabbage (Brassica rapa ssp. pekinensis)

Sodium Nitroprusside 처리가 배추의 저온 스트레스 경감에 미치는 영향

  • Jinhyoung Lee (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Seunghwan Wi (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Hyejin Lee (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Sanggyu Lee (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Minseo Kang (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Taeyang Kim (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Seonghoe Jang (World Vegetable Center Korea Office (WKO)) ;
  • Heeju Lee (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 이진형 (농촌진흥청 국립원예특작과학원) ;
  • 위승환 (농촌진흥청 국립원예특작과학원) ;
  • 이혜진 (농촌진흥청 국립원예특작과학원) ;
  • 이상규 (농촌진흥청 국립원예특작과학원) ;
  • 강민서 (농촌진흥청 국립원예특작과학원) ;
  • 김태양 (농촌진흥청 국립원예특작과학원) ;
  • 장성회 (세계채소센터 한국사무소) ;
  • 이희주 (농촌진흥청 국립원예특작과학원)
  • Received : 2023.10.13
  • Accepted : 2023.10.24
  • Published : 2023.10.31

Abstract

The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7℃) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.

본 연구에서는 저온 스트레스 조건에서 sodium nitroprusside (SNP, 산화질소 donor)의 경엽처리가 배추의 생장, 광합성 특성 및 생리활성 반응에 미치는 영향을 구명하고자 하였다. SNP를 각각 7.5, 15, 및 30mg·L-1 농도로 주당 100mL을 4일 간격으로 3회 엽면 살포하였고, 7일간 저온 스트레스를 처리하였다. SNP 처리 시 광합성 속도, 기공전도도, 세포 내 CO2 농도 및 증산 속도는 무처리 대비 증가하였고, 3회차 처리 후 가장 높았다. MDA와 H2O2 함량은 무처리 대비 현저하게 감소하였다. APX, CAT, POD 및 SOD 활성은 무처리 대비 현저하게 증가하였으며, 각각 최대 38, 187, 24 및 175% 증가하였다. 배추의 생육 특성은 무처리구와 유의한 차이를 보이지 않았으나, 생체중과 엽면적은 5% 정도 증가하였다. 따라서 SNP의 경엽처리는 배추의 생육, 광합성 특성 및 항산화효소 활성을 증대시키고 저온 스트레스에 의한 피해 경감에 긍정적인 효과를 유발함을 확인하였다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(과제번호: RS-2020-RD009367)의 지원에 의해 수행되었음.

References

  1. Alnusairi G.S.H., Y.S.A. Mazrou, S.H. Qari, A.A. Elkelish, M.H. Soliman, M. Eweis, K. Abdelaal, G.A. El-Samad, M.F.M. Ibrahim, and N.E. Nahhas 2021, Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants 10:1693. doi:10.3390/plants10081693
  2. Baxter A., R. Mittler, and N. Suzuki 2014, ROS as key players in plant stress signaling. J Exp Bot 65:1229-1240. doi:10.1093/jxb/ert375
  3. Bellin D., S. Asai, M. Delledonne, and H. Yoshioka 2013, Nitric oxide as a mediator for defense responses. Mol Plant-Microbe Interact 26:271-277. doi:10.1094/MPMI-09-12-0214-CR
  4. Bhattachrya A. 2022, Effect of low temperature stress on photosynthesis and allied traits: A review. In A Bhattacharaya, ed, Physiological processes in plants under low temperature stress. Springer, Singapore, pp 199-297. doi:10.1007/7/978-981-16-9037-2
  5. Bradford M.M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3
  6. Caverzan A., A. Casassola, and S.P. Brammer 2016, Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In A Shanker, C Shanker, eds, Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen, London, UK, pp 463-480. doi:10.5772/61368
  7. Chomkitichai W., A. Chumyam, P. Rachtanapun, J. Uthaibutra, and K. Saengnil 2014, Reduction of reactive oxygen species production and membrane damage during storage of 'Daw' longan fruit by chlorine dioxide. Sci Hortic 170:143-149. doi:10.1016/j.scienta.2014.02.036
  8. Clark D., J. Durner, D.A. Navarre, and D.F. Klessig 2000, Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact 13:1380-1384. doi:10.1094/MPMI.2000.13.12.1380
  9. Dhindsa R.S., P. Plumb-Dhindsa, and Y.A. Thorpe 1981, Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93-101. doi:10.1093/jxb/32.1.93
  10. Esim N., and O. Atici 2014, Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul 72:29-38. doi:10.1007/s10725-013-9833-4
  11. Fan H., C. Du, Y. Xu, and X. Wu 2014, Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hortic Environ Biotechnol 55:159-165. doi:10.1007/s13580-014-0161-z
  12. Fan H.F., C.X. Du, L. Ding, and Y.L. Xu 2013, Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiol Plant 35:2707-2719. doi:10.1007/s11738-013-1303-0
  13. Fan Q.J., and J.H. Liu 2012, Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31:145-154. doi:10.1007/s00299-011-1148-1
  14. Fancy N.N., A. Bahlmann, and G.J. Loake 2017, Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462-472. doi:10.1111/pce.12707
  15. Hayat S., S. Yadav, A.S. Wani, M. Irfan, M.N. Alyemini, and A. Ahmad 2012, Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hortic Environ Biotechnol 53:362-367. doi:10.1007/s13580-012-0481-9
  16. Kong W.W., C.Y. Huang, Q. Chen, Y.J. Zou, M.R. Zhao, and J.X. Zhang 2012, Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis. Biotechnol Lett 34:1915-1919. doi:10.1007/s10529-012-0988-2
  17. Korean Statistical Information Service (KOSIS) 2023, vegetable production (green vegetables) 1980~2022. (in Korean) https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0291&vw_d=MT_ZTITLE&list_id=K1_19&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE
  18. Lee H.J., J.S. Kim, S.G. Lee, S.K. Kim, B.H. Mun, and C.S. Choi 2017, Glutamic acid foliar application enhances antioxidant enzyme activities in kimchi cabbages leaves treated with low air temperature. Hortic Sci Technol 35:700-706. (in Korean) doi:10.12972/kjhst.20170074
  19. Lee J.G., J. Lee, S. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um 2011, Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J Bio-Env Con 20:326-332. (in
  20. Lee J.H., H.J. Lee, S.H. Wi, I.H. Yu, K.H. Yeo, S.W. An, Y.A. Jang, and S.H. Jang 2021, Enhancement of growth and antioxidant enzyme activities on kimchi cabbage by melatonin foliar application under high temperature and drought stress conditions. Hortic Sci Technol 39:583-592. (in Korean) doi:10.7235/HORT.20210052
  21. Liu X., L. Wang, L. Liu, Y. Guo, and H. Ren 2011, Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. Afr J Biotechnol 10:4380-4386.
  22. Liu Y.J., H.F. Jiang, Z.G. Zhao, and L.Z. An 2010, Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. Plant Physiol Biochem 48:936-944. doi:10.1016/j.plaphy.2010.09.001
  23. Mao H., M. Chen, Y. Su, N. Wu, M. Yuan, S. Yuan, M. Brestic, M. Zivcak, H. Zhang, and Y. Chen 2018, Comparison on photosynthesis and antioxidant defense systems in wheat with different ploidy levels and octoploid Triticale. Int J Mol 19:3006. doi:10.3390/ijms19103006
  24. Mittler R. 2017, ROS are good. Trends Plant Sci 22:11-19. doi:10.1016/j.tplants.2016.08.002
  25. Nabi R.B.S., R. Tayade, A. Hussain, K.P. Kulkarni, Q.M. Imran, B.G. Mun, and B.W. Yun 2019, Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120-133. doi:10.1016/j.envexpbot.2019.02.003
  26. Neill S.J., R. Desikan, and J.T. Hancock 2003, Nitric oxide signaling in plants. New Phytol 159:11-35. doi:10.3390/plants9111550
  27. Oz M.T., F. Eyidogan, M. Yucel, and H.A. Oktem 2015, Functional role of nitric oxide under abiotic stress conditions. In MN Mobin, M Mohammad, FJ Corpas, eds, Nitric oxide action in abiotic stress responses in plants. Khan Springer Cham, Berlin, Germany, pp 21-41. doi:10.1007/978-3-319-17804-2_2
  28. Saddiqui M.H., M.H. Al-Whaibi, and M.O. Basalah 2011, Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447-455. doi:10.1007/s00709-010-0206-9
  29. Sardar H., Z. Khalid, M. Ahsan, S. Naz, A. Nawaz, R. Ahmad, K. Razzaq, S.M. Wabaidur, C. Jacquard, I. Siri'c, P. Kumar, and S.A. Fayssal 2023, Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants 12:1115. doi:10.3390/plants12051115
  30. Sehar Z., I.R. Mir, S. Khan, A. Masood, and N.A. Khan 2023, Nitric oxide and proline modulate redox homeostasis and photosynthetic metabolism in wheat plants under high temperature stress acclimation. Plants 12:1256. doi:10.3390/plants12061256
  31. Short A.W., R.J. Chen, and K.S. Wee Alison 2020, Comparison between parapatry mangrove sister species revealed higher photochemical efficiency in subtropical than tropical coastal vegetation under chilling stress. Aquat Bot 168:103323. doi:10.1016/j.aquabot.2020.103323
  32. Simontacchi M., A. Galatro, F. Ramos-Artuso, and G.E. Santa-Maria 2015, Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977. doi:10.3389/fpls.2015.00977
  33. Sohag A.A.M., Md. Tahjib-Ul-Arif, S. Afrin, Md.K. Khanc, Md. A.Hannan, M. Skalicky, Md.G. Mortuza, M. Brestic, M.A. Hossain, and Y. Murata 2020, Insights into nitric oxide-mediated water balance, antioxidant defence and mineral homeostasis in rice (Oryza sativa L.) under chilling stress. Nitric Oxide 100-101:7-16. doi:10.1016/j.niox.2020.04.001
  34. Song X.P., Z.P. Xu, K.W. Zhang, L. Liang, J.C. Xiao, Z.G. Liang, G.F. Yu, B. Sun, Z. Huang, Y. Tang, Y.S. Lai, and H.X. Li 2023, NO and GSH alleviate the inhibition of low-temperature stress on cowpea seedlings. Plants 12:1317. doi:10.3390/plants12061317
  35. Tang C.N., J.M. Xie, L. Jian, J. Zhang, C. Wang, and G. Liang 2021, Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. Plant Physiol Biochem 162:395-409. doi:10.1016/j.plaphy.2021.03.010
  36. Xie Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang 2019, Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99-106. doi:10.1016/j.envexpbot.2018.11.021
  37. Xie Z., C. Yang, M. Li, Z. Zhang, Y. Wu, L. Gu, and X. Peng 2022, Nitric oxide crosstalk with phytohormone is involved in enhancing photosynthesis of Tetrastigma hemsleyanum for photovoltaic adaptation. Front Plant Sci 13:852956. doi:10.3389/fpls.2022.852956
  38. Yang H., F. Wu, and J. Cheong 2011, Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127:1237-1242. doi:10.1016/j.foodchem.2011.02.011
  39. Zhao L., J.X. He, X.M. Wang, and L.X. Zhang 2008, Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182-191. doi:10.1016/j.jplph.2007.03.002