• Title/Summary/Keyword: Branched structure

Search Result 152, Processing Time 0.026 seconds

Roles of sugar chains in immunostimulatory activity of the polysaccharide isolated from Angelica gigas (참당귀에서 분리한 다당의 면역활성에 대한 당쇄의 역할)

  • Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.336-342
    • /
    • 2019
  • To elucidate structure-function relationship of polysaccharide from Angelica gigas, the AGE-2c-I was purified by two successive chromatography steps. AGE-2c-I showed a potent anti-complementary activity in a dose-dependent manner. AGE-2c-I with a molecular weight of 140 kDa comprised four monosaccharides and 13 glycosyl linkages, and strongly reacted with ${\beta}$-glucosyl Yariv reagent. For the fine structure analysis of AGE-2c-I, it was sequentially digested by exo-arabinofuranosidase and endo-galactanase. The results indicated that AGE-2c-I was a typical RG-I polysaccharide with side chains such as highly branched ${\alpha}$-arabinan, ${\beta}$-($1{\rightarrow}4$)-galactan and arabino-${\beta}$-3,6-galactan. To characterize the active moiety of AGE-2c-I, the anti-complementary activities of AGE-2c-I and its subfractions were assayed. It was observed that the anti-complementary activity of AGE-2c-I was due to the entire structure that resembled RG-I. In addition, arabino-${\beta}$-3,6-galactan side chain (GN-I) in AGE-2c-I probably plays a crucial role in the anti-complementary activity, whereas ${\alpha}$-arabinan side chain (AFN-I) consisting of 5-linked Araf and 3,5-branched Araf partially contributes to the activity.

The Grammatical Structure of Protein Sequences

  • Bystroff, Chris
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.28-31
    • /
    • 2000
  • We describe a hidden Markov model, HMMTIR, for general protein sequence based on the I-sites library of sequence-structure motifs. Unlike the linear HMMs used to model individual protein families, HMMSTR has a highly branched topology and captures recurrent local features of protein sequences and structures that transcend protein family boundaries. The model extends the I-sites library by describing the adjacencies of different sequence-structure motifs as observed in the database, and achieves a great reduction in parameters by representing overlapping motifs in a much more compact form. The HMM attributes a considerably higher probability to coding sequence than does an equivalent dipeptide model, predicts secondary structure with an accuracy of 74.6% and backbone torsion angles better than any previously reported method, and predicts the structural context of beta strands and turns with an accuracy that should be useful for tertiary structure prediction. HMMSTR has been incorporated into a public, fully-automated protein structure prediction server.

  • PDF

Studies on the Coating Structure and Printability of Coated Paper(II) - Effect of Ionic Groups of Latices on Coating Structure - (도공층 구조 및 도공지의 인쇄적성에 관한 연구(II) - 라텍스 이온기가 도공층 구조에 미치는 영향 -)

  • Lee, Yong-Kyu;Park, Kyu-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.10-16
    • /
    • 1997
  • This study was carried out to improve coating structure by controlling the electrostatic interaction of coating components and by changing the coating structure of coated paper prepared with amphoteric and anionic latices. The results indicated that amphoteric latex copolymerized with carboxylic and amine groups had stronger interaction with other coating components than anionic latex with branched carboxylic group by controlling pH. These properties of amphoteric latex showed positive effects on viscosity rheology, and supernatant sediment of coating color. The coated paper using amphoteric latex had also produced more porous and smoother coverage of the coating layer than that using anionic latex. This porous and smooth coating layer showed better optical properties and printability than those of anionic latex such as opacity, porosity, ink set-off, and wet ink receptivity.

  • PDF

Synthesis of Renewable Jet Fuel Precursors from C-C Bond Condensation of Furfural and Ethyl Levulinate in Water

  • Cai, Chiliu;Liu, Qiying;Tan, Jin;Wang, Tiejun;Zhang, Qi;Ma, Longlong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.519-526
    • /
    • 2016
  • Biomass derived jet fuel is proven as a potential alternative for the currently used fossil oriented energy. The efficient production of jet fuel precursor with special molecular structure is prerequisite in producing biomass derived jet fuel. We synthesized a new jet fuel precursor containing branched $C_{15}$ framework by aldol condensation of furfural (FA) and ethyl levulinate (EL), where the latter of two could be easily produced from lignocellulose by acid catalyzed processes. The highest yield of 56% for target jet fuel precursor could be obtained at the optimal reaction condition (molar ratio of FA/EL of 2, 323 K, 50 min) by using KOH as catalyst. The chemical structure of $C_{15}$ precursor was specified as (3E, 5E)-6-(furan-2-yl)-3-(furan-2-ylmethylene)-4-oxohex-5-enoic acid ($F_2E$). For stabilization, this yellowish solid precursor was hydrogenated at low temperature to obtain C=C bonds saturated product, and the chemical structure was proposed as 4-oxo-6-(tetrahydrofuran-2-yl)-3-(tetrahydrofuran-2-yl)-methyl hexanoic acid ($H-F_2E$). The successful synthesis of the new jet fuel precursors showed the significance that branched jet fuel could be potentially produced from biomass derived FA and EL via fewer steps.

Synthesis and Comparison of Properties of Waterborne Polyurethanes Using Polyols Containing 3-Methyl-1,5-Pentanediol (MPD) (3-Methyl-1,5-Pentanediol (MPD)을 함유한 폴리올을 이용한 수분산 폴리우레탄의 합성 및 특성 비교)

  • Kim, Na-Young;Sur, Suk-Hun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • Waterborne polyurethanes (WPU) was synthesized using polyester polyol and polycarbonate polyol containing 3-Methyl-1,5-pentanediol (MPD) in a branched structure. To compare physical properties, WPUs were synthesized using polyester polyol obtained from 1,4-butanediol (BD) and adipic acid and polycarbonate polyol obtained from 1,6-hexane diol (HD)/ 1,4-butanediol (BD). This study investigated the effect of polyol molecular structure (molecular structure in soft segments) on the physical properties of WPUs. In the case of WPUs synthesized using polyols containing MPD, 100% modulus and tensile strength were lower than that without MPD, and elongation was higher. The transparency of WPU films with MPD were slightly better than WPU films without MPD.

Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties (조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석)

  • Junho Jang;Dong Jun Kang;Hyeon-Gyun Im
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.346-355
    • /
    • 2023
  • Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell (글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.693-697
    • /
    • 2016
  • In this study, we fabricated the catalysts for enzymatic biofuel cell anode with carbon nanotube (CNT), glucose oxidase (GOx) and various molecular weights branched poly(ethyleneimine)(bPEI) and terephthalaldehyde (TPA) as cross-linker. In case of GOx/bPEI/CNT using only physical entrapments for immobilization, the molecular weights of bPEI didn't affect to electrochemical performances and long term stability. but that of the catalysts cross linked via TPA (TPA[GOx/bPEI/CNT]) improved and the mass transfer of glucose to FAD was interrupted as increasing of the bPEI's molecular weights. Furthermore, it was confirmed that the optimum molecular weight of PEI for TPA [GOx/bPEI/CNT]) structure is 750k that showed marvelous high performance (maximum power density of $0.995mW{\cdot}cm^{-2}$).

Polyplex Formation of Calf Thymus DNA with Branched and Linear Polyethyleneimine

  • Han, Jung-Ho;Kim, Seog K.;Cho, Tae-Sub;Lee, Jae-Cheol;Joung, Hyun-Sook
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.501-506
    • /
    • 2004
  • We have investigated the spectral properties of DNA, including its electric absorption, circular and linear dichroism (CD and LD), and fluorescence emission, in the DNA-linear polyethyleneimine (LPEI) and DNA-branched polyethyleneimine (BPEI) complexes at various polymer concentrations. The spectral properties of both complexes are similar. We observed a relatively moderate change in the absorption and CD spectra at low amine/DNA phosphate (NIP) ratios (< 0.5), followed by a drastic collapse within the N/P range from 0.8 and 1.0. The absorption and CD spectra recovered as the N/P ratio increased to ca. 1.2. In contrast, the LD and emission of ethidium intercalated between the DNA bases decreased almost linearly at N/P ratios between 0.0 and 1.0. These spectra never recovered at higher N/P ratios. We believe that the moderate changes in the spectrum at low N/P ratios occurred because of electrostatic interactions between DNA and BPEI, while the collapsed spectra at N/P ratios between 0.5 and 1.5 occurred because of condensation/aggregation of the DNA. Considering the structure of the polymers, we suggest that the secondary amino group of LPEI and all three amino groups of BPEI are equally involved in DNA condensation.

Chemical Modification of Isotactic Polypropylene by Melt Blending

  • Kim, Jun-Young;Seo, Eun-Su;Park, Dae-Soon;Park, Kwang-Min;Kang, Seong-Wook;Lee, Chang-Hyung;Kim, Seong-Hum
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • The branched polypropylene (b-PP) was prepared by melt blending process with initiator, antioxidant, and functional monomers to improve the melt strength through the melt grafting. The melt flow index (MFI) of the b-PP was increased with increasing the initiator content. On the introduction of the alkylamine as the branching agents the MFI of the b-PP was increased, while that of the b-PP with the pentaerythritol triacrylate (PT) was decreased. It may be caused by the chain scission of the i-PP backbone due to the reduced thermal stability of the i-PP on the melt blending. The MFI of the b-PP without the antioxidant was increased due to the chain scission occurred during the melt processing, while on the introduction of the antioxidant, the MFI of the b-PP was decreased. The crystallization temperature of the b-PP was higher than that of PP, which was attributed to the branched chain structure. It was found that the PT was the most effective functional monomers for enhancing the melt properties of the b-PP.

Low Molecular Weight PEI Conjugated Pluronic Copolymer: Useful Additive for Enhancing Gene Transfection Efficiency

  • Cho Kyung-Chul;Choi Seung-Ho;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.348-353
    • /
    • 2006
  • For enhancing the gene delivery efficiency of polyplexes, a new formulation was developed using PEI conjugated Pluronic F127 copolymer as an effective additive. Low molecular weight, branched polyethylenimine Mw 600 (LMW BPEI 600) was conjugated to the terminal end of Pluronic F127. The PEI-modified Pluronic copolymers formed a micellar structure in aqueous solution, similar to that of unmodified Pluronic copolymer. PEI modification of Pluronic copolymer increased the size of micelles while concomitantly raising the critical micelle concentration (CMC). The PEI-modified Pluronic copolymer was used as a micellar additive to enhance the gene transfection efficiency of pre-formulated polyelectrolyte complex nanoparticles composed of luciferase plasmid DNA and branched PEI Mw 25k (BPEI 25k) or polylysine Mw 39k (PLL 39k). The luciferase gene expression levels were significantly enhanced by the addition of the BPEI-modified Pluronic copolymer for the two formulations of BPEl and PLL polyplexes. The results indicated that the BPEI-modified Pluronic copolymer micelles ionically interacted on the surface of DNA/BPEI (PLL) polyplexes which might facilitate cellular uptake process.