• Title/Summary/Keyword: Branched Chain

Search Result 195, Processing Time 0.026 seconds

Effects of Dietary Supplementation with Branched-chain Amino Acids (BCAAs) during Nursing on Plasma BCAA Levels and Subsequent Growth in Cattle

  • Li, J.Y.;Suzuki, K.;Koike, Y.;Chen, D.S.;Yonezawa, T.;Nishihara, M.;Manabe, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1440-1444
    • /
    • 2005
  • To determine the effects of short-term dietary supplementation of branched-chain amino acids (BCAAs) during nursing (from 3 to 28 days of age) on plasma BCAA levels and subsequent growths in cattle, 12 nursing male Holstein calves, randomly assigned to control and treatment groups (n = 6 in each group), orally received a daily supplement of essential BCAAs (2 g/kg body weight/day; 1:1:1 of valine, leucine and isoleucine) or not. The plasma BCAA levels increased linearly after the administration. During the treatment period, average daily gain (ADG) was lower in the treatment group (0.43${\pm}$0.07 kg/day) than the controls (0.71${\pm}$0.07 kg/day, p<0.05). However, at 2 months of age, ADG was significantly higher in the BCAA-treated group (1.16${\pm}$0.26 kg/day vs. 0.51${\pm}$0.06 kg/day, p<0.05). Furthermore, at age 8, 9 and 10 month, ADG in the treated group (1.35${\pm}$0.23, 1.46${\pm}$0.07 and 1.60${\pm}$0.16 kg/day, respectively) showed a linear increase and was significantly higher than that in the control group (0.88${\pm}$0.14, 0.70${\pm}$0.21 and 1.11${\pm}$0.11 kg/kg, respectively, p<0.05). Overall, ADG was 15.6% higher in the treatment group (1.26${\pm}$0.05 kg vs. 1.09${\pm}$0.04 kg; p<0.05). The final body weight at slaughter was 14.8% higher in the treatment group (759.5${\pm}$17.7 kg vs. 661.7${\pm}$21.2 kg, p<0.01). Thus, the supplementation of BCAAs during nursing improves ADG and carcass weight in cattle and is a useful husbandry technique for beef cattle.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Inhibition Characteristics of Chlorsulfuron and Imazaquin on Acetolactate Synthase Activity of Corn Plants (Chlorsulfuron 및 Imazaquin에 의한 옥수수 Acetolactate Synthase 활성의 저해특성)

  • Hwang, I.T.;Kim, K.J.;Lee, H.J.;Cho, K.Y.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.122-131
    • /
    • 1996
  • The inhibition characteristics of chlorsulfuron [CHL, 2-chloro-N-[{ (4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino}carbonyl]benzenesulfonamide] and imazaquin [IMA, 2-{4,5-dihydro-4-methyl-4-(1-methy-lethyl)-5-oxo-1H-imidazol-2-yl}-3-quinolinecarboxylic acid] on acetolactate synthase(ALS) activity of corn plants were investigated. CHL and IMA rapidly inhibited ALS activity of corn plants in vitro. Their $I_{50}$ values for ALS activity were 100nM and $5{\mu}M$, respectively, indicating that CHL had 50 times more inhibitory effect on ALS activity than IMA. The first applied herbicide had a dominant inhibitory effect on ALS activity when the two herbicides were applied sequentially. Branched-chain amino acids, valine(Val), leucine(Leu), and isoleucine(Ile) showed a feedback inhibition on ALS activity ; Val or Leu had a more inhibitory effect on ALS activity than Ile. Branchedchain amino acids and CHL or IMA exhibited an additive effect on inhibiting ALS activity. This suggests that branched-chain amino acids inhibit ALS activity by a different mechanisms) from that of CHL or IMA. Apparent ALS activity, which was measured on the basis of the conversion of pyruvate to acetolactate, was decreased by the addition of 2-ketobutyrate into the ALS reaction mixture in a concentration-dependent manner. In addition, kinetic studies revealed that CHL acts as a noncompetitive inhibitor, while IMA acts as an uncompetitive inhibitor to ALS with respect to pyruvate.

  • PDF

Effects of Branched Chain Amino Acids Added to a Diet on the Liver Regeneration in the Partial Hepatectomized Rat (분지쇄(分枝?)아미노산(酸)이 재생간(再生肝) 흰쥐에 미치는 영양학적(營養擧的) 효과(?果))

  • Kim, Eul-Sang;Fukushima, Hideo;Oda, Toshitsugu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.4
    • /
    • pp.451-458
    • /
    • 1984
  • The effects of branched chain amino acids added to a diet on changes in the body weight with or without liver, moist and dry liver weight, protein, DNA, $^3H-thymidine$ incorporation into DNA, ana mitotic index of regenerating liver were studied in partial hepatectomized rat. Experimental diet was a 14.63% casein diet supplemented with 1.49% L-leucine, 0.90% L-isoleucine and 0.98% L-Valine, and control diet was an 18.0% casein. In both diets, 2.54% nitrogen were included. Rats fed experimental diet were significantly increased body weight with or without liver 7 days, and regenerated weight of dry liver and an index of liver regeneration 5 days after partial hepatectomy. Mitotic index, contents of protein and DNA increased in regenerating liver after partial hepatectomy was higher in experimental diet group. This results suggest that branched chain amino acids have an benefitial effect on whole body as well as liver regeneration after partial hepatectomy in rat.

  • PDF

Preparation of Branched-chain Amino Acid (BCAA)-enriched Hydrolysates from Corn Gluten (고 분지아미노산 함유한 옥수수 단백가수물의 제조조건 탐색)

  • Chung, Yong-Il;Bae, In-Young;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • The process of the preparation of branched-chain amino acid (BCAA)-enriched hydrolysates from corn gluten was optimized through the parameters of pre-treatment (heating and cellulosic hydrolysis), hydrolysis method (acid, protease, and microbe plus protease), concentration, and spray drying condition. The protein yield of corn gluten was increased by heating and cellulase treatments. Among three different hydrolysis methods, the combined use of microbes and protease was the most effective in terms of free amino acid (FAA) and BCAA content of the corn gluten hydrolysates. In addition, the FAA and BCAA content in the hydrolysates prepared by microbial and enzymatic combined treatment were improved by a concentration process. Spray drying conditions for the preparation of the powder from the hydrolyzed reactant were an inlet temperature of $185^{\circ}C$, outlet temperature of $80^{\circ}C$, and the use of maltodextrin as an anticaking agent. Thus, this study established an economical process for preparation of value-added hydrolysates of excellent productivity and quality, in terms of high BCAA content and product stability.

Comparison of the stability between branched-chain amino acid (BCAA)-coated liposome and double emulsion (분지쇄아미노산(BCAA)이 포집된 더블에멀션과 리포좀의 안정성 비교)

  • Lee, YunJung;Lee, SangYoon;Shin, Hyerin;Kang, Guhyun;Wi, Gihyun;Ko, Eun Young;Cho, Youngjae;Choi, Mi-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.636-641
    • /
    • 2018
  • This study was conducted to compare the stability between branched-chain amino acid (BCAA)-encapsulated liposome and double emulsion (DE). Liposome was produced by high-speed homogenization and ultrasonication whereas DE was prepared by homogenizing with surfactants. All samples were fixed at pH 4 and 7 and stored at 4, 25, and $40^{\circ}C$ for 5 days. Encapsulation efficiency and cumulative release rate were measured under $4^{\circ}C$ and at $25^{\circ}C$. The results showed that the size of BCAA-coated liposome was greater at pH 7 than at pH 4. The zeta-potential value of BCAA-coated liposome was greater at pH 4 than at pH 7. It was supposed that the negatively charged liposomes attracted the positively charged BCAAs at pH 4 resulting in the formation of the vesicle with smaller size. Particle size of DE was smaller than $100{\mu}m$. Encapsulation efficiencies of BCAA in DE or liposome were over 97%, approximately, and the cumulative release rates of them were below 30% for 5 days.

A Study on the Rheological Properties of Branched Polypropylene/silicate Composites (분지형 폴리프로필렌/실리케이트 복합체의 유변학적 특성 연구)

  • Dahal, Prashanta;Yoon, Kyung Hwa;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.679-684
    • /
    • 2011
  • Branched polypropylenes (LCB-PP) with a long chain branch were prepared by the solid-state and molt-state reaction. Divinylbenzene (DVB), 1,4-benzenediol (RES), and furfuryl sulphide (FS) were used as branching agents of fabricate LCB-PP/silicate composites. Chemical structures, thermal properties, and rheological properties of the LCB-PP were determined by FT-IR, DSC, TGA, and dynamic rheometer (ARES). The chemical structure of the LCB-PP was confirmed by the existence of =C-H stretching peak of the branching agent at $3100cm^{-1}$. From DSC and TGA results, the melting reaction was more effective than the solid state reaction in the manufacture of LCB-PP, which was additionally certified by rheological properties. Based on rheological properties, FS was the best for branching efficiency of PP. Compared to PP, LCB-PPs indicated an increase of complex viscosity in the low frequency and shear thinning tendency, and G'-G" plot represented an increase in elasticity and the heterogeneousness in a melt state. Rheological properties of LCB-PP/silicate composites were observed with the silicate content. When 5 wt% silicate was added in LCB-PP, distinct changes in the shear thinning and the slope of G'-G" plots were observed.

Polymerization of Anisole Derivatives Containing Allyl or Chloromethyl Group Through Aromatic Electrophilic Substitution Reaction

  • 장지영;박필정;한만정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1288-1291
    • /
    • 1997
  • 4-Allylanisole was polymerized with AlCl3 as a catalyst. The polymerization was carried out in nitroethane at various temperatures with changing the ratio of the initiator to the monomer concentration. The weight averge molecular weights measured by gel permeation chromatography in chloroform with polystyrene standards were between 1,500 and 4,700. 1H NMR spectroscopy showed that the polymerization proceeded through a stepwise aromatic electrophilic substitution reaction along with a minor chain-reaction, resulting in a branched polymer. 4-Chloromethylanisole was also polymerized with AlCl3 in nitroethane through an aromatic electrophilic substitution reaction to give a high molecular weight polymer (Mw=88,000).

Methods for rapid identification of a functional single-chain variable fragment using alkaline phosphatase fusion

  • Lee, Kyung-Woo;Hur, Byung-Ung;Song, Suk-Yoon;Choi, Hyo-Jung;Shin, Sang-Hoon;Cha, Sang-Hoon
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.731-736
    • /
    • 2009
  • The generation of functional recombinant antibodies from hybridomas is necessary for antibody engineering. However, this is not easily accomplished due to high levels of aberrant heavy and light chain mRNAs, which require a highly selective technology that has proven complicated and difficult to operate. Herein, we attempt to use an alkaline phosphate (AP)-fused form of single-chain variable fragment (scFv) for the simple identification of a hybridoma-derived, functional recombinant antibody. As a representative example, we cloned the scFv gene from a hybridoma-producing mouse IgG against branched-chain keto acid dehydrogenase complex-E2 (BCKD-E2) into an expression vector containing an in-frame phoA gene. Functional recombinant antibodies were easily identified by conventional enzyme-linked immunosorbent assay (ELISA) by employing scFv-AP fusion protein, which also readily serves as a valuable immuno-detective reagent.

Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes

  • Lee, Joo-Sung;Cho, Joon-Hee
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Effect of activation energy and crystallization kinetics of polyethylenes (PEs) on the dynamics and stability has been investigated by changing rheological properties and crystallization rate in film casting process. The effect of changes of these properties has been shown using a typical example of short-chain branching (SCB) in linear polyethylenes. SCBs in linear polymers generally lead to the increase of the flow activation energy, and to the decrease of the crystallization rate, making polymer viscosity lower in the case of equivalent molecular weight. In general, the increment of the crystallinity of polymers under partially crystallized state helps to enhance the process stability by increasing tension, and lower fluid viscoelasticity possesses the stabilizing effect for linear polymers. It has been found that the fluid viscoelasticity plays a key role in the control of process stability than crystallization kinetics which critically depends on the cooling to stabilize the film casting process of short-chain branched polymers operated under the low aspect ratio condition.