• Title/Summary/Keyword: Branch-and-price

Search Result 67, Processing Time 0.027 seconds

A Branch-and-price Approach to the ATM Switching Node Location Problem

  • Kim, Deokseong;Park, Sunsoo;Lee, Kyungsik;Park, Kyungchul
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 2004
  • We consider the ATM switching node location problem (ANLP). In this problem, there are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities. We need to determine the locations to place facilities, the number of facilities for each selected location, the set of customers who are connected to each installed hub via installed remote facilities with minimum cost, while satisfying demand requirements of each customer. We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we present a preprocessing procedure to tighten the formulation and develop a branch-and-price algorithm. In the algorithm, we consider the integer knapsack problem as the column generation problem. Computational experiments show that the algorithm gives optimal solutions in a reasonable time.

Assignment-Change Optimization for the Problem of Bid Evaluation (입찰 평가 문제의 배정-변경 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • This paper deals with bid evaluation problem that chooses the vendors and quantity with minimum purchasing cost for bid information of setup cost and unit price. For this problem, the branch-and-bound(BB) and branch-and-cut(BC) methods are well-known. But these methods can be fail to obtain the optimal solution. This paper gets the initial feasible solution with procuring quantity assignment principle in accordance with the unit price or setup cost rank-first. Then procuring quantity moving optimization(vendor change) is execute take account of unit price or setup cost rank. As a result of experimentation, the propose algorithm is significantly lower compared to BB and BC.

A Branch-and-price Algorithm for the Minimum ADM Problem on WDM Ring Networks (WDM 링에서의 ADM 최소화 문제에 대한 분지평가 해법)

  • Chung, Ji-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, we consider the minimum ADM problem which is the fundamental problem for the cost-effective design of SONET ADM embedded in WDM ring networks. To minimize the number of SONET ADMs, efficient algorithms for the routing and wavelength assignment are needed. We propose a mathematical model based on the graph theory for the problem and propose a branch-and-price approach to solve the suggested model effectively within reasonable time. By exploiting the mathematical structure of ring networks, we developed polynomial time algorithms for column generation subroutine at branch-and-bound tree. In a computer simulation study, the suggested approach can find the optimal solution for sufficient size networks and shows better performance than the greedy heuristic method.

A Branch-and-price Algorithm for the Vehicle Routing Problem with Time Dependent Travel Times (이동시간의 변화를 고려한 차량경로 문제의 분지평가법을 이용한 최적화 해법)

  • Lee, Yong-Sik;Lee, Chung-Mok;Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • Most of the models for the vehicle routing problems studied in the literature assumed constant travel times. However, those approaches may give infeasible solutions when traffic congestion causes delays in travel time. To overcome such difficulty, there have been some researches considering the change of the travel time which is called the time dependent vehicle routing problem (TDVRP). TDVRP assumes that the travel time between two locations is not only affected by the distance traveled, but by many other factors including the time of the day. In this paper, we propose a branch-and-price algorithm to solve the TDVRP. The time dependent property of the travel time is dealt with an enumeration scheme with bounding procedures in the column generation procedure identifying a profitable route. The proposed algorithm guarantees the "Non-passing" property to be held in the solutions. The algorithm was tested on problems composed of the Solomon's benchmark instances for 25 and 50 nodes. Computational results are reported.

Development of Dual-Arm Anticancer Drug Compounding Robot and Preparation System with Adaptability and High-Speed

  • Nam, Giyoon;Kim, Young Joo;Kim, Yun Jung;Kim, Yeoun Jae;Seo, Jung Ae;Kim, Kyunghwan;Kim, Kwang Gi
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.64-68
    • /
    • 2016
  • Aim Robots are able to increase safety for pharmacy staff as separating from toxicity of anti-cancer drugs. For patient safety, it would provide right dose of the drugs. Additionally, it can reduce price of the drugs. Therefore, in this study, a novel compounding anticancer drugs robot system (Dupalro) was developed. Methods We used the robot system, Motoman dual-arm robot from YASKAWA, Japan and medications which are adapted for the robot were constructed. In order to develop a process of compounding anticancer drugs, information about five medications that are required to make anticancer drugs in hospitals was used. Results System for the five types of medications was constructed, and relating procedures for anticancer drugs compounding robot were developed. Conclusion Dupalro successfully was able to not only provide incremental safety and efficiency for both patients and pharmacy staff, but also decrease price of anticancer drugs.

An Optimization Algorithm for The Pickup and Delivery Problem With Time Windows (동일경로 제약을 갖는 집배송 차량 경로 수립 문제의 최적화 해법)

  • Kang, Ja-Young;Zang, Hee-Jeong;Kang, Jang-Ha;Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2007
  • The pickup and delivery problem with time windows generally involves the construction of optimal routeswhich satisfy a set of transportation requests under pairing, precedence, time window, vehicle capacity, andavailability constraints. In this paper, we added some constraints to the problem and adopted an objectivefunction based on number of used vehicles, total travel distance and total schedule duration to consider morerealistic problems. A branch and price algohthm for the problem is proposed and an enumeration method is usedfor the subproblems. The algorithm was tested on randomly generated instances and computational results werereported.

A Layered Network Flow Algorithm for the Tunnel Design Problem in Virtual Private Networks with QoS Guarantee

  • Song, Sang-Hwa;Sung, Chang-Sup
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-62
    • /
    • 2006
  • This paper considers the problem of designing logical tunnels in virtual private networks considering QoS guarantee which restricts the number of tunnel hops for each traffic routing. The previous researches focused on the design of logical tunnel itself and Steiner-tree based solution algorithms were proposed. However, we show that for some objective settings it is not sufficient and is necessary to consider both physical and logical connectivity at the same time. Thereupon, the concept of the layered network is applied to the logical tunnel design problem in virtual private networks. The layered network approach considers the design of logical tunnel as well as its physical routing and we propose a modified branch-and-price algorithm which is known to solve layered network design problems effectively. To show the performance of the proposed algorithm, computational experiments have been done and the results show that the proposed algorithm solves the given problem efficiently and effectively.

Microgrid energy scheduling with demand response

  • Azimian, Mahdi;Amir, Vahid;Haddadipour, Shapour
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.85-100
    • /
    • 2020
  • Distributed energy resources (DERs) are essential for coping with growing multiple energy demands. A microgrid (MG) is a small-scale version of the power system which makes possible the integration of DERs as well as achieving maximum demand-side management utilization. Hence, this study focuses on the analysis of optimal power dispatch considering economic aspects in a multi-carrier microgrid (MCMG) with price-responsive loads. This paper proposes a novel time-based demand-side management in order to reshape the load curve, as well as preventing the excessive use of energy in peak hours. In conventional studies, energy consumption is optimized from the perspective of each infrastructure user without considering the interactions. Here, the interaction of energy system infrastructures is considered in the presence of energy storage systems (ESSs), small-scale energy resources (SSERs), and responsive loads. Simulations are performed using GAMS (General Algebraic modeling system) to model MCMG, which are connected to the electricity, natural gas, and district heat networks for supplying multiple energy demands. Results show that the simultaneous operation of various energy carriers, as well as utilization of price-responsive loads, lead to better MCMG performance and decrease operating costs for smart distribution grids. This model is examined on a typical MCMG, and the effectiveness of the proposed model is proven.

A Branch-and-Price Algorithm for the Bandwidth Packing Problem (대역폭 분할 문제를 위한 Branch-and-Price 알고리듬)

  • Kim Deokseong;Lee Kyungsik;Park Sungsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.381-385
    • /
    • 2003
  • We consider the bandwidth parking problem arising from telecommunication networks The problem is to determine the set of calls to be routed and an assignment or them to the paths in arc capacitated network. The objective is to maximize profit. We formulate the problem as an integer programming and propose an algorithm to solve it. Column generation technique to solve the linear programming relxation is proposed with two types of columns in addition, to obtain an optimum integer solution, we consider a new branching strategy. Computational experiments show that the algorithm gives option at solutions within reasonably small time limits.

  • PDF

Finding Optimal Small Networks by Mathematical Programming Models (수리계획 모형을 이용한 최적의 작은 네트워크 찾기)

  • Choi, Byung-Joo;Lee, Hee-Sang
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper we study the Minimum Edge Addition Problem(MEAP) to decrease the diameter of a graph. MEAP can be used for improving the serviceability of telecommunication networks with a minimum investment. MEAP is an NP-hard optimization problem. We present two mathematical programming models : One is a multi-commodity flow formulation and the other is a path partition formulation. We propose a branch-and-price algorithm to solve the path partition formulation to the optimality. We develop a polynomial time column generation sub-routine conserving the mathematical structure of a sub problem for the path partition formulation. Computational experiments show that the path partition formulation is better than the multi-commodity flow formulation. The branch-and-price algorithm can find the optimal solutions for the immediate size graphs within reasonable time.