• Title/Summary/Keyword: Branch-and-Bound Algorithm

Search Result 191, Processing Time 0.028 seconds

A branch and bound algorithm for solving a capacitated subtree of a tree problem in local access telecommunication network

  • Cho, Geon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.09a
    • /
    • pp.202-210
    • /
    • 1995
  • Given a tree T with a root node 0 having the capacity H and a profit $c_{v}$ and a demand $d_{v}$ on each node v of T, the capacitated subtree of a tree problem(CSTP) is to find a subtree of T containing the root that has the maximum total profit, the sum of profits over the subtree, and also satisfies the constraint of which the sum of demands over the subtree must be less than or equal to H. We first define the so-called critical item for CSTP and find an upper bound on the linear programming relaxation of CSTP. We then present our branch and bound algorithm for solving CSTP and finally report the computational results on a set of randomly generated test problems.s.s.

  • PDF

An Improvement of Algorithms for Assembly-type Flowshop Scheduling Problem with Outsourcing (부품외주를 고려한 조립형 Flowshop 일정계획 해법 개선)

  • Yoon, Sang-Hum;Juhn, Jae-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.80-93
    • /
    • 2008
  • This paper improves algorithms for an assembly-type flowshop scheduling problem in which each job is to assemble two types of components and makespan is the objective measure. For the assembly, one type of the components is outsourced with job-dependent lead time but the other type is fabricated in-house. When both components for a job are prepared, the assembly operation for the job can be started. This problem had been proved to be NP-Complete, so branch-and-bound (B&B) and heuristic algorithms have already been developed. In this paper, we suggest other dominance rules, lowerbound and heutistic algorithms. Also, we develop a new B&B algorithm using these improved bound and dominance rules. The suggested heuristics and B&B algorithm are compared with existing algorithms on randomly-generated test problems.

A Branch and Bound Algorithm for the Hierarchical Transportation Network Design Problem in Directed Networks (유방향 네트워크에서 계층수송망 설계 문제에 대한 분지한계법)

  • Shim, Hyun-Taik;Park, Son-Dal
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.86-102
    • /
    • 1991
  • The purpose of this paper is to present a branch and bound algorithm for the hierarchical transportation network design problem in 2-level directed networks. This problem is to find the least cost of hierarchical transportation networks which consist of a primary path and a secondary path. The primary path is a simple path from a prespecified orgin node to a prespecified terminal node. All nodes must be either a transsipment node on the primary path or connected to that path via secondary arcs. This problem is formulated to a 0-1 inter programming problem with assignment and illegal subtour elimination equations as constaints. We show that the subproblem relaxing subtour elimination constraints is transformed to a linear programming problem by means of the totally unimodularity. Optimal solutions of this subproblem are polynoially obtained by the assignment algorithm and complementary slackness conditions. Therefore, the optimal value of this subproblme is used as a lower bound. When an optimal solution of the subproblem has an illegal subtour, a better disjoint rule is adopted as the branching strategy for reducing the number of branched problems. The computational comparison between the least bound rule and the depth first rule for the search strategy is given.

  • PDF

A Study on Transmission System Expansion Planning using Fuzzy Branch and Bound Method

  • Park, Jaeseok;Sungrok Kang;Kim, Hongsik;Seungpil Moon;Lee, Soonyoung;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.121-128
    • /
    • 2002
  • This study proposes a new method for transmission system expansion planning using fuzzy integer programming. It presents stepwise cost characteristics analysis which is a practical condition of an actual system. A branch and bound method which includes the network flow method and the maximum flow - minimum cut set theorem has been used in order to carry out the stepwise cost characteristics analysis. Uncertainties of the permissibility of the construction cost and the lenient reserve rate and load forecasting of expansion planning have been included and also processed using the fuzzy set theory in this study. In order to carry out the latter analysis, the solving procedure is illustrated in detail by the branch and bound method which includes the network flow method and maximum flow-minimum cut set theorem. Finally, case studies on the 21- bus test system show that the algorithm proposed is efficiently applicable to the practical expansion planning of transmission systems in the future.

Depth-first branch-and-bound-based decoder with low complexity (검출 복잡도를 감소 시키는 Depth-first branch and bound 알고리즘 기반 디코더)

  • Lee, Eun-Ju;Kabir, S.M.Humayun;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2525-2532
    • /
    • 2009
  • In this paper, a fast sphere decoder is proposed for the joint detection of phase-shift keying (PSK) signals in uncoded Vertical Bell Laboratories Layered Space Time (V-BLAST) systems. The proposed decoder, PSD, consists of preprocessing stage and search stage. The search stage of PSD relies on the depth-first branch-and-bound (BB) algorithm with "best-first" orders stored in lookup tables. Simulation results show that the PSD is able to provide the system with the maximum likelihood (ML) performance at low complexity.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

A Branch-and-Bound Algorithm for U-line Line Balancing (U라인 라인밸런싱을 위한 분지한계법)

  • 김여근;김재윤;김동묵;송원섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.83-101
    • /
    • 1998
  • Assembly U-lines are increasingly accepted in industry, especially just-in-time production systems, for the efficient utilization of workforce. In this paper, we present an integer programming formulation and a branch-and-bound method for balancing the U-line with the objective of minimizing the number of workstations with a fixed cycle time. In the mathematical model, we provide the method that can reduce the number of variables and constraints. The proposed branch-and-bound method searches the optimal solution based on a depth-first-search. To efficiently search for the optimal solutions to the problems, an assignment rule is used in the method. Bounding strategies and dominance rules are also utilized. Some problems require a large amount of computation time to find the optimal solutions. For this reason. some heuristic fathoming rules are also proposed. Extensive experiments with test-bed problems in the literature are carried out to show the performance of the proposed method. The computational results show that our method is promising in solution quality.

  • PDF

A Vertical File Partitioning Method Using SOFM in Database Design (데이터베이스 설계에서 SOFM 을 이용한 화일 수직분할 방법)

  • Shin, K.H.;Kim, J.Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.661-671
    • /
    • 1998
  • It is important to minimize the number of disk accesses which is necessary to transfer data in disk into main memory when processing transactions in physical database design. A vertical file partitioning method is used to reduce the number of disk accesses by partitioning relations vertically and accessing only necessay fragments. In this paper, SOFM(Self-Organizing Feature Maps) network is used to solve vertical partitioning problems. This paper shows that SOFM network is efficient in solving vertical partitioning problem by comparing approximate solution of SOFM network with optimal solution of N-ary branch and bound method. And this paper presents a heuristic algorithm for allocating duplicate attributes to vertically partitioned fragments. As branch and bound method requires particularly much computing time to solve large-sized problems, it is shown that SOFM network is able to overcome this limitation of branch and bound method and solve large-sized problems efficiently in a short time.

  • PDF

Time Series Pattern Recognition based on Branch and Bound Dynamic Time Warping (분기 한정적인 동적 타임 워핑 기반의 시계열 패턴인식)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.584-589
    • /
    • 2010
  • The dynamic time warping algorithm generally used in time series pattern recognition spends most of the time in generating the correlation table, and it establishes the global path constraint to reduce the corresponding time complexity. However, the constraint restrains just in terms of the time axis, not considering the contents of input patterns. In this paper, we therefore propose an efficient branch and bound dynamic time warping algorithm which sets the global constraints by adaptively reflecting the patterns. The experimental results show that the proposed method outperforms conventional methods in terms of the speed and accuracy.

Design of High-Speed 2-D State-Space Digital Filters Based on a Improved Branch-and-Bound Algorithm (개량된 분기한정법에 의한 고속연산 2차원 상태공간 디지털필터의 설계)

  • Lee Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1188-1195
    • /
    • 2006
  • This paper presents an efficient design method of 2-D state-space digital filter based on an improved branch-and -bound algorithm. The resultant 2-D state-space digital filters whose coefficients are represented as the sum of two power-of-two terms, are attractive for high-speed operation and simple implementation. The feasibility of the proposed method is demonstrated by several experiments. The results show that the approximation error and group delay characteristic of the resultant filters are similar to those of the digital filters which designed in the continuous coefficient space.