• Title/Summary/Keyword: Branch-and-Bound Algorithm

Search Result 191, Processing Time 0.026 seconds

Multi-Objective Genetic Algorithm for Machine Selection in Dynamic Process Planning (동적 공정계획에서의 기계선정을 위한 다목적 유전자 알고리즘)

  • Choi, Hoe-Ryeon;Kim, Jae-Kwan;Lee, Hong-Chul;Rho, Hyung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.84-92
    • /
    • 2007
  • Dynamic process planning requires not only more flexible capabilities of a CAPP system but also higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations by calculating the machine loads. The developed algorithm is based on the multi-objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as the Pareto-optimal solutions). The objective is to satisfy both the minimization number of part movements and the maximization of machine utilization. The algorithm is characterized by a new and efficient method for nondominated sorting through K-means algorithm, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II and branch and bound algorithm.

An Optimal Algorithm for the Sensor Location Problem to Cover Sensor Networks

  • Kim Hee-Seon;Park Sung-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.17-24
    • /
    • 2006
  • We consider the sensor location problem (SLP) on a given sensor field. We present the sensor field as grid of points. There are several types of sensors which have different detection ranges and costs. If a sensor is placed in some point, the points inside of its detection range can be covered. The coverage ratio decreases with distance. The problem we consider in this thesis is called multiple-type differential coverage sensor location problem (MDSLP). MDSLP is more realistic than SLP. The coverage quantities of points are different with their distance form sensor location in MDSLP. The objective of MDSLP is to minimize total sensor costs while covering every sensor field. This problem is known as NP-hard. We propose a new integer programming formulation of the problem. In comparison with the previous models, the new model has a smaller number of constraints and variables. This problem has symmetric structure in its solutions. This group is used for pruning in the branch-and-bound tree. We solved this problem by branch-and-cut(B&C) approach. We tested our algorithm on about 60 instances with varying sizes.

  • PDF

Top-down Hierarchical Clustering using Multidimensional Indexes (다차원 색인을 이용한 하향식 계층 클러스터링)

  • Hwang, Jae-Jun;Mun, Yang-Se;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.367-380
    • /
    • 2002
  • Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

A Vehicle Routing Model for Multi-Supply Centers Based on Lp-Distance (일반거리산정방법을 이용한 다-물류센터의 최적 수송경로 계획 모델)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • This study is focussed on an optimal vehicle routing model for multi-supply centers in two-echelon logistic system. The aim of this study is to deliver goods for demand sites with optimal decision. This study investigated an integrated model using step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations such as the capability of supply centers, vehicle capacity and transportation parameters. Three sub-models are developed: 1) sector-clustering model, 2) a vehicle-routing model based on clustering and a heuristic algorithm, and 3) a vehicle route scheduling model using TSP-solver based on genetic and branch-and-bound algorithm. Also, we have developed computer programs for each sub-models and user interface with visualization for major inputs and outputs. The application and superior performance of the proposed model are demonstrated by several sample runs for the inventory-allocation and vehicle routing problems.

  • PDF

Rough Cut Tool Path Planning in Fewer-axis CNC Machinig (저축 CNC 환경에서의 황삭가공)

  • 강지훈;서석환;이정재
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • This paper presents rough cut tool path planning for the fewer-axis machine consisting of a three-axis CNC machine and a rotary indexing table. In the problem dealt with in this paper, the tool orientation is "intermediately" changed, distinguished from the conventional problem where the tool orientation is assumed to be fixed. The developed rough cut path planning algorithm tries to minimize the number of tool orientation (setup) changes together with tool changes and the machining time for the rough cut by the four procedures: a) decomposition of the machining area based on the possibility of tool interference (via convex hull operation), b) determination of the optimal tool size and orientation (via network graph theory and branch-and bound algorithm), c) generation of tool path for the tool and orientation (based on zig-zag pattern), and d) feedrate adjustment to maintain the cutting force at an operation level (based on average cutting force). The developed algorithms are validated via computer simulations, and can be also used in pure fiveaxis machining environment without modification.

  • PDF

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

-Machining Route Selection with the Shop Flow Information Using Genetic Algorithm- (작업장 특성을 고려한 가공경로선정 문제의 유전알고리즘 접근)

  • 이규용;문치웅;김재균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.13-26
    • /
    • 2000
  • Machining route selection to produce parts should be based on shop flow information because of input data at scheduling tasks and is one of the main problem in process planning. This paper addresses the problem of machining route selection in multi-stage process with machine group included a similar function. The model proposed is formulated as 0-1 integer programing considering the relation of parts and machine table size, avaliable time of each machine for planning period, and delivery date. The objective of the model is to minimize the sum of processing, transportation, and setup time for all parts. Genetic algorithm approach is developed to solve this model. The efficiency of the approach is examined in comparison with the method of branch and bound technique for the same problem. Also, this paper is to solve large problem scale and provide it if the multiple machining routes are existed an optimal solution.

  • PDF

Machining Route Selection with Subcontracting Using Genetic Algorithm (와주를 고려한 가공경로 선정에서의 유전알고르즘 접근)

  • 이규용;문치웅;김재균
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • This paper addresses a problem of machining route selection in multi-stage process with machine group. This problem is considered the subcontracting and the production in-house such as regular and overtime work. the proposed model is formulated as a 0-1 integer programming constraining the avaliable time of each machine for planning period and total overtimes. The objective of the model is to minimize the sum of processing cost, overtime cost, and subcontracting cost. To solve this model, a genetic algorithm(GA) approach is developed. The effectiveness of the proposed GA approach is evaluated through comparisons with the optimal solution obtained from the branch and bound. In results, the same optimal solution is obtained from two methods at small size problem, and the consistent solution is provided by the GA approach at large size problem. The advantage of the GA approach is the flexibility into decision-making process because of providing multiple machining routes.

  • PDF

Two-Stage Hybrid Flow Shop Scheduling: Minimizing the Number of Tardy Jobs (2 단계 혼합흐름공정에서의 일정계획문제에 관한 연구)

  • Choi Hyun-Seon;Lee Dong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1133-1138
    • /
    • 2006
  • This paper considers a hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. The hybrid flow shop consists of two stages in series, each of which has multiple identical parallel machines, and the problem is to determine the allocation and sequence of jobs at each stage. A branch and bound algorithm that gives the optimal solutions is suggested that incorporates the methods to obtain the lower and upper bounds. Dominance properties are also derived to reduce the search space. To show the performance of the algorithm, computational experiments are done on randomly generated problems, and the results are reported.

  • PDF