• 제목/요약/키워드: Branch Element

검색결과 299건 처리시간 0.021초

집중 소자형 음의 군지연 회로 설계 (Analysis of Lumped Element Negative Group Delay Circuit)

  • 정용채;최흥재;김철동
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.374-379
    • /
    • 2010
  • In this paper, we have mathematically analyzed lumped element type negative group delay circuit (NGDC) and derived general design equation. The applicability of the proposed design equation is validated with mathematical and circuit simulation as well as with experimental results for intentional mobile telecommunication 2000 (IMT-2000) downlink band. As a design example, single branch NGDC with -0.8ns of group delay (GD) for narrow bandwidth of the specific frequency is simulated and fabricated. Finally, $\pi$-network NGDC is proposed and validated to obtain wideband GD response of $-1.7{\pm}0.06$ nsec for 60 MHz.

An interface element for modelling the onset and growth of mixed-mode cracking in aluminium and fibre metal laminates

  • Hashagen, Frank;de Borst, Rene
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.817-837
    • /
    • 1997
  • In the present contribution an interface crack model is introduced which is capable of modelling crack initialisation and growth in aluminium as well as in Fibre Metal Laminates. Interface elements are inserted in a finite element mesh with a yield function which bounds all states of stress in the interface. Hardening occurs after a state of stress exceeds the yield stress of the material. The hardening branch is bounded by the ultimate stress of the material. Thereafter, the state of stress is reduced to zero while the inelastic deformations grow. The energy dissipated by the inelastic deformations in this process equals the fracture energy of the material. The model is applied to calculate the onset and growth of cracking in centre cracked plates made of aluminium and GLARE$^{(R)}$. The impact of the model parameters on the performance of the crack model is studied by comparisons of the numerical results with experimental data.

Optimization Shape of Variable-Capacitance Micromotor Using Seeker Optimization Algorithm

  • Ketabi, Abbas;Navardi, Mohammad Javad
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.212-220
    • /
    • 2012
  • In the current paper, the optimization shape of a polysilicon variable-capacitance micromotor (VCM) was determined using the seeker optimization algorithm (SOA). The optimum goal of the algorithm was to find the maximum torque value and minimum ripple torque by varying the geometrical parameters. The optimization process was performed using a combination of SOA and the finite-element method (FEM). The fitness value was calculated via FEM analysis using COMSOL3.4, and SOA was realized by MATLAB7.4. The proposed method was applied to a VCM with eight and six poles at the stator and rotor, respectively. For comparison, this optimization was also performed using the genetic algorithm. The results show that the optimized micromotor using SOA had a higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • 제3권4호
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

700 MHz 대역 LTE용 광대역 PIFA 설계 (A Design of Wide-Band PIFA for 700 MHz LTE Band)

  • 박찬진;민경식;김정원;안성용
    • 한국전자파학회논문지
    • /
    • 제23권3호
    • /
    • pp.328-334
    • /
    • 2012
  • 본 논문은 휴대폰용 700 MHz 대역 LTE용 안테나의 광대역 설계 기법을 제안한 것이다. 제안한 안테나는 역 F(Planar Inverted - F) 구조를 기본으로 설계되었다. 광대역을 실현하기 위해 전기적 길이를 제어하는 방법으로 라운드 구조와 이중 공진 특성을 얻을 수 있는 지선 소자가 설계에 도입되었다. 그 결과, 복소비 유전율이 4.4인 FR-4 기판에서 $30{\times}34mm$의 협소한 공간임에도 불구하고, 약 95 MHz의 대역폭을 실현했다. 측정된 반사손실, 대역폭과 이득 방사 패턴은 계산 값과 잘 일치하였다.

Suggesting double-web I-shaped columns for omitting continuity plates in a box-shaped column

  • Saffari, Hamed;Hedayat, Amir A.;Goharrizi, Nasrin Soltani
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.585-603
    • /
    • 2013
  • Generally the required strength and stiffness of an I-shaped beam to the box-shaped column connection is achieved if continuity plates are welded to the column flanges from all sides. However, welding the forth edge of a continuity plate to the column flange may not be easily done and is normally accompanied by remarkable difficulties. This study was aimed to propose an alternative for box columns with continuity plates to diminish such problems. For this purpose a double-web I-shaped column was proposed. In this case the strength and rotational stiffness of the connection was provided by nearing the column webs to each other. Finite element studies on about 120 beam-column connections showed that the optimum proportion of the distance between two column webs and the width of the column flange (parameter ${\beta}$) was a function of the ratio of the beam flange width to the column flange width (parameter ${\alpha}$). Hence, based on the finite element results, an equation was proposed to estimate the optimum value of parameter ${\beta}$ in terms of parameter ${\alpha}$ to achieve the highest connection performance. Results also showed that the strength and ductility of post-Northridge connections of such columns are in average 12.5 % and 54% respectively higher than those of box-shaped columns with ordinary continuity plates. Therefore, a double-web I-shaped column of optimum arrangement might be a proper replacement for a box column with continuity plates when beams are rigidly attached to it.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

A Parameter Selection Method for Multi-Element Resonant Converters with a Resonant Zero Point

  • Wang, Yifeng;Yang, Liang;Li, Guodong;Tu, Shijie
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.332-342
    • /
    • 2018
  • This paper proposes a parameter design method for multi-element resonant converters (MERCs) with a unique resonant zero point (RZP). This method is mainly composed of four steps. These steps include program filtration, loss comparison, 3D figure fine-tuning and priority compromise. It features easy implementation, effectiveness and universal applicability for almost all of the existing RZP-MERCs. Meanwhile, other design methods are always exclusive for a specific topology. In addition, a novel dual-CTL converter is also proposed here. It belongs to the RZP-MERC family and is designed in detail to explain the process of parameter selection. The performance of the proposed method is verified experimentally on a 500W prototype. The obtained results indicate that with the selected parameters, an extensive dc voltage gain is obtained. It also possesses over-current protection and minimal switching loss. The designed converter achieves high efficiencies among wide load ranges, and the peak efficiency reaches 96.9%.

스페이스프레임 구조물의 통합설계시스템 개발 (Development of Integrated Design System for Space Frame Structures)

  • 이주영;이재홍
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF