• Title/Summary/Keyword: Branch Element

Search Result 299, Processing Time 0.025 seconds

Effects of piezoelectric material on the performance of Tonpilz transducer using finite element method (Tonpilz 트랜스듀서의 성능에 미치는 압전소재의 영향)

  • Seo, Jin-Won;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.139-144
    • /
    • 2016
  • Effects of the shape and size of the piezoelectric materials on the performance of tonpilz transducers were studied with a computer simulation using a finite element method (FEM). The diameter and height of the donut-shaped piezoelectric ceramics head mass were changed as variables. And the effect of the stack number was also investigated. Finally, if the piezoelectric ceramics were changed to a piezoelectric single crystal having high piezoelectric constants, how the performances especially, the output power and the TVR transmittance were affected was simulated by FEM. As a result, the output of transducer could be increased to 10 times of PZT-4 with replacement of relaxor single crystal of the same size.

The Ultimate Strength Analysis of CHS Tubular Joints by Finite Element Method (유한요소법에 의한 원통형 연결부의 극한강도 해석)

  • 옥재호;우광성;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.43-50
    • /
    • 1998
  • The current design equations for ultimate strength of tubular joints are based on a limited number of experimental results performed on simple joints with simple loading conditions and depend on value of the branch to the chord diameter- ratio $\beta$ too much. Therefore, the purpose of this study is to estimate the ultimate strength of CHS tilbular joints considering the effects of branch inclination angles $\theta$, chord length to diametel ratio $\alpha$ and chord end conditions by finite element analysis. The analyses are performed using finite element software ADINA that is capable of modeling elasto-plastic material behavior as well as geometric nonlinearities. The results show that the current use of sin $\theta$ in normalized design equations for inclined branches is reasonable, but somewhat conservative. When compared with the previous experimental database, the close numerical results are obtained from the parametric studies on the static strength of T-, Y-, DT- and X-joints. Also, a new design equation for ultimate stregth of CHS tubular joints is derived using a modified version of the ring model which can include the effects of $\alpha$ and chord end condtion.

  • PDF

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

  • Azandariani, Mojtaba Gorji;Gholhaki, Majid;Kafi, Mohammad Ali;Zirakian, Tadeh;Khan, Afrasyab;Abdolmaleki, Hamid;Shojaeifar, Hamid
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.109-123
    • /
    • 2021
  • This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.

Assessment of cyclic behavior of chevron bracing frame system equipped with multi-pipe dampers

  • Behzadfar, Behnam;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.303-313
    • /
    • 2020
  • Spacious experimental and numerical investigation has been conducted by researchers to increase the ductility and energy dissipation of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy dissiption, is the use of energy-absorbing systems. In this regard, the cyclic behavior of a chevron bracing frame system equipped with multi-pipe dampers (CBF-MPD) was investigated through finite element method. The purpose of this study was to evaluate and improve the behavior of the CBF using MPDs. Three-dimensional models of the chevron brace frame were developed via nonlinear finite element method using ABAQUS software. Finite element models included the chevron brace frame and the chevron brace frame equipped with multi-pipe dampers. The chevron brace frame model was selected as the base model for comparing and evaluating the effects of multi-tube dampers. Finite element models were then analyzed under cyclic loading and nonlinear static methods. Validation of the results of the finite element method was performed against the test results. In parametric studies, the influence of the diameter parameter to the thickness (D/t) ratio of the pipe dampers was investigated. The results indicated that the shear capacity of the pipe damper has a significant influence on determining the bracing behavior. Also, the results show that the corresponding displacement with the maximum force in the CBF-MPD compared to the CBF, increased by an average of 2.72 equal. Also, the proper choice for the dimensions of the pipe dampers increased the ductility and energy absorption of the chevron brace frame.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

Simplified Design and Optimization of Slotless Brushless DC Machine for Micro-Satellites Electro-Mechanical Batteries

  • Abdi, Babak;Bahrami, Hamid;Mirtalaei, S.M.M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.124-129
    • /
    • 2013
  • Electro-Mechanical Batteries have important advantages compared with chemical batteries, especially in Low Earth Orbit satellites applications. High speed, slotless, external rotor, brushless DC machines are proposed and used in these systems as Motor/Generator. A simplified analytic design method is given for this type of machines and, the optimization of machine in order to have maximum efficiency and minimum volume and weight are given in this paper. Particle swarm optimization (PSO) is used as the optimization algorithm and the finite element-based simulations are used to confirm the design and optimization process and show less than 6% error in parametric design.

Crack identification in Timoshenko beam under moving mass using RELM

  • Kourehli, Seyed Sina;Ghadimi, Siamak;Ghadimi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2018
  • In this paper, a new method has been proposed to detect crack in beam structures under moving mass using regularized extreme learning machine. For this purpose, frequencies of beam under moving mass used as input to train machine. This data is acquired by the analysis of cracked structure applying the finite element method (FEM). Also, a validation study used for verification of the FEM. To evaluate performance of the presented method, a fixed simply supported beam and two span continuous beam are considered containing single or multi cracks. The obtained results indicated that this method can provide a reliable tool to accurately identify cracks in beam structures under moving mass.

Experimentally evaluating the seismic retrofitting of square engineered cementitious composite columns using CFRP

  • Akhtari, Alireza;Mortezaei, Alireza;Hemmati, Ali
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.545-556
    • /
    • 2021
  • The present experimental study evaluated the seismic performance of six engineered cementitious composite (ECC) columns strengthened with carbon fiber reinforced polymer (CFRP) laminates under cyclic lateral loading. The ECC columns damaged and crushed in the first stage of cyclic tests were repaired using the ECC with a certain polyvinyl alcohol (PVA) fiber and strengthened with flexural and sheer CFRP laminates and then re-assessed under the cyclic loading. The effects of some variables were examined on lateral displacement, energy absorption and dissipation, failure modes, crack patterns, load bearing capacity and plasticity, and the obtained results were compared with those of the first stage of cyclic tests. The results showed that retrofitting the ECC columns can improve their performance, plasticity and load-bearing threshold, delayed the concrete failure, changed the failure modes and increased the energy absorbed by the strengthened columns element by over 50%.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.