• Title/Summary/Keyword: Branch Element

Search Result 299, Processing Time 0.019 seconds

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Yin-Yang and Five-Element Characteristics of Day Master on Four Time Pillars of Birth in Korean Population with Schizophrenia: A Consilience-Based Holistic Approach (조현병 환자군과 일반 인구군간 출생일간(出生日干)의 음양오행적 특성 비교: 통섭(統攝)적 측면에서의 접근)

  • Tae-Young Hwang;Ji-Eun Lee;Geum-Dan Yi;Yeoung-Su Lyu
    • Journal of Oriental Neuropsychiatry
    • /
    • v.34 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • Objectives: The existing reductionist approach has not reached complete understanding of the cause of schizophrenia. The objective of this study was to investigate yin-yang and five-element characteristics reflected on four time pillars of birth of patients with schizophrenia through comparison with the general population in the perspective of consilience-based holistic approach. Methods: This study was conducted using a random sequential recruitment method for the general population and individuals with schizophrenia aged 18 to 64 based on the exact date and time of birth using structured questionnaires. Relative positional relations of yin-yang and five-element with day master were primarily examined. In addition, the strength of day master with a score range of 0~100 points was assessed through operational score allocation. Results: Of 591 participants, 576 (346: general population, 230: individuals with schizophrenia) were analyzed. Between-group analyses showed no significant difference in the distribution of types of day master (χ2=10.41, df=9, p=0.318). However, significant between-group differences were shown in the distribution of the strength of day master (t=2.14, p=0.032) and frequency of restraining month branch (χ2=5.23, df=1, p=0.022). In logistic regression analysis, 10-point increase on the strength of day master decreased the probability of onset of schizophrenia over the age of 30 by 29.6% (p=0.002; 95% confidence interval, 0.566~0.876). Conclusions: Findings in this study suggest that four time pillars of birth might be associated with schizophrenia through yin-yang and five-element theory and synchronicity principle, implicating the plausibility of consilience-based holistic approach in the determination of risk factors or cause of schizophrenia.

Applicability of the mα-tangent Method to Estimate Plastic Limit Loads of Elbows and Branch Junctions (선형탄성해석과 mα-tangent방법을 이용한 배관 한계하중 평가 적용성)

  • Gim, Jae-Min;Kim, Sang-Hyun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • In this study, the limit loads calculated by the $m_{\alpha}-tangent$ method based on the linear finite element analysis are compared with the closed form solutions that are proposed by various authors. The objects of the analysis is to select the elbow and the branch pipe which are representative structure of piping system. The applicability of the $m_{\alpha}-tangent$ method are investigated by applying it to cases with various geometries. The internal pressure and the in-plane bending moment are considered and the $m_{\alpha}-tangent$ method is in good agreement with the existing solutions in case of elbows. However, the limit loads calculated by the $m_{\alpha}-tangent$ method for branch junctions do not agree well with the existing solutions and do not show any tendency. The reason is a biased result due to the stress concentration of the discontinuous parts.

Seismic Evaluation for Strainer in the Primary Cooling System (일차 냉각계통 스트레이너에 대한 내진 건전성 평가)

  • 정철섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.295-304
    • /
    • 2000
  • To evaluate the structural integrity for the strainer under seismic loading the seismic analysis and design were performed for T-type strainer in accordance with ASME, Section Ⅲ, Class 3(ND). Since there are no specified design requirements for the strainer in ASME Code, the strainer body was analysed according to ND-3500, valve design. Flanged joints connected with PCS piping were designed according to ND-3658.3. And the criteria for the cover flange was governed by the Appendix XI. Both a frequency analysis and an equivalent static seismic analysis of the strainer were carried out using the finite element computer program, ANSYS. The frequency analysis results show the fundamental natural frequency is greater than 33Hz, thus justifying the use of the equivalent static analysis through which membrane and bending stresses are obtained in the critical points near the branch connection area. The results of the seismic evaluation fully satisfied with the structural acceptance criteria of the ASME Code. Accordingly the structural integrity on the strainer body and flanges were proved.

  • PDF

Experimental and numerical simulating of the crack separation on the tensile strength of concrete

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks ($90^{\circ}$ to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.

Evaluation of Compressive Chord Plastification of Circular Hollow Section X-joint Truss Connection (원형강관 X-이음 트러스접합부의 압축 주강관소성화 평가)

  • Lee, Kyungkoo;Sin, Yong Sup;Son, Eun Ji
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • The researches on circular hollow section(CHS) connections have been conducted continuously because of development of material properties and complex local behavior of the connections. The purpose of this study is that the effects of material strength and chord wall slenderness on chord plastification and strength of CHS X-joint truss connection under compression on branch member were evaluated. To this end, finite element analyses were performed for various connections, using ANSYS Mechanical APDL program. Based on the analysis results, the design strength of the connections according to chord plastification limit state in KBC were examined. Finally, special considerations for CHS X-joint connection design were suggested.