• Title/Summary/Keyword: Branch Element

Search Result 299, Processing Time 0.024 seconds

Yonsei Evolutionary Population Synthesis for Old Stellar Systems

  • Chung, Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.31.2-31.2
    • /
    • 2012
  • We present the Yonsei Evolutionary Population Synthesis (YEPS) models for spectroscopic and photometric evolutions of simple and composite stellar populations. The models are based on the most up-to-date Yonsei-Yale stellar evolutionary tracks and BaSel 3.1 flux libraries, and provide integrated spectroscopic quantities of Lick/IDS system including high-order Balmer absorption-lines. Special care has been taken to incorporate the systematic variation of horizontal branch (HB) morphology as functions of metallicity, age, alpha-element mixture, and helium abundance of simple stellar populations. Our models for normal-helium stellar populations indicate that the realistic modeling of HB and alpha-element brings about 5 Gyr and 0.1 dex differences in age and metallicity estimations, respectively, compared to those without these effects. The HB effect does not depend on the specific choice of stellar libraries and alpha-element enhancements, and this effect is non-negligible even in the metal sensitive absorption indices, such as Mg2 and Mg b. Comparison of the models to observations reveals that the HB and alpha-element effects are critical in understanding otherwise inexplicable phenomena found in globular cluster systems in the Milky Way and nearby galaxies, including the observed bimodality of the line strengths of globular clusters in massive galaxies. In addition, we found that helium-enhanced stellar populations, which are the major sources of extreme HB stars, bring about increased FUV, NUV fluxes, and thus the model colors of those filters become extremely blue. Age dating based on the YEPS model with normal-helium stellar populations reveals that the evidence for 'downsizing' of elliptical galaxies is found not only in the local field but also in Coma cluster, and that the mean age of elliptical galaxies in Coma cluster is about 1.4 Gyr younger than the mean age of those in the local field. We also find that our models with helium-enhanced subpopulations can naturally reproduce the strong UV-upturns observed in giant elliptical galaxies assuming an age similar to that of old GCs in the Milky Way.

  • PDF

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

Plastic hinge length of RC columns considering soil-structure interaction

  • Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.679-702
    • /
    • 2013
  • During an earthquake, soils filter and send out the shaking to the building and simultaneously it has the role of bearing the building vibrations and transmitting them back to the ground. In other words, the ground and the building interact with each other. Hence, soil-structure interaction (SSI) is a key parameter that affects the performance of buildings during the earthquakes and is worth to be taken into consideration. Columns are one of the most crucial elements in RC buildings that play an important role in stability of the building and must be able to dissipate energy under seismic loads. Recent earthquakes showed that formation of plastic hinges in columns is still possible as a result of strong ground motion, despite the application of strong column-weak beam concept, as recommended by various design codes. Energy is dissipated through the plastic deformation of specific zones at the end of a member without affecting the rest of the structure. The formation of a plastic hinge in an RC column in regions that experience inelastic actions depends on the column details as well as soil-structure interaction (SSI). In this paper, 854 different scenarios have been analyzed by inelastic time-history analyses to predict the nonlinear behavior of RC columns considering soil-structure interaction (SSI). The effects of axial load, height over depth ratio, main period of soil and structure as well as different characteristics of earthquakes, are evaluated analytically by finite element methods and the results are compared with corresponding experimental data. Findings from this study provide a simple expression to estimate plastic hinge length of RC columns including soil-structure interaction.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Globular clusters with multiple red giant branches: Population synthesis models

  • Joo, Seok-Joo;Lee, Young-Wook;Na, Chongsam;Han, Sang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.75-75
    • /
    • 2013
  • Recent observations have shown that some massive globular clusters (GCs) host multiple stellar populations having different heavy element abundances enriched by supernovae. They usually accompany multiple red giant branches (RGBs) in the color-magnitude diagrams (CMDs), and are distinguished from most of the other GCs which display variations only in light element abundances. In order to investigate the star formation histories of these peculiar GCs, we have constructed synthetic CMDs based on the updated versions of Yonsei.Yale ($Y^2$) isochrones and horizontal branch evolutionary tracks which include the cases of enhancements in both helium and the total CNO abundances. To estimate ages and helium abundances of subpopulations in each GC, we have compared our models with the observations on the Hess diagram by employing a ${\chi}^2$ minimization technique. In this talk, we will present our progress in the population modeling for these GCs with multiple RGBs.

  • PDF

Evaluation of Internal Resistance in Asphalt Concretes

  • Zandi, Yousef;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.247-250
    • /
    • 2012
  • Composites are somewhat more difficult to model than an isotropic material such as iron or steel due to the fact that each layer may have different orthotropic material properties. In finite element literature the asphalt mixes are represented by using rectangular meshes, not the actual picture of their cross-sections. Asphalt aggregate size and distribution in the asphalt concrete sample, aggregate shape, and fractured surface effects are ignored. In this research, the actual image of the sample including all these effects were directly considered in the finite element. The samples, were cut into cross-sections and were scanned. The image-processing toolbox of Labview was utilized in obtaining the rectangular gray images of the scanned images. In the rectangular sample the aggregates were white and the asphalt binders were black. The grayscale images were converted by LABVIEW into the format required by ANSYS as an input file, with the same dimensions. The nodes at the bottom of the model were constrained in both x and y directions. Left and right edges were symmetry and top was free. Certain amount of pressure was applied along the top surface to simulate the tire pressure.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Design and Fabrication of the Broadband Microstrip Array Antenna with a Conical Radiation Pattern and the Circular Plarization (원추형 복사패턴과 원편파 특성을 가지는 광대역 마이크로스트립 배열 안테나의 설계와 제작)

  • 이면주;이광욱;이수용;정문희;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1774-1784
    • /
    • 1993
  • This paper presents the design, fabrication and measured results of the broadband microstrip array with a conical radiation pattern and the circular array composed of six square microstrip antenna elements. Each element antenna has the stacked structure with a parasitic element to achieve a broadband characteristic and a branch line quadrature hybrid is attached to it for the circular polarization. The design procedures and measured results of the scheme for obtaining the conical radiation pattern which is useful for the mobile communication via the satellite. Finally, the performance of the fabricated antenna is measured and compared with the theory.

  • PDF

Finite Element Analysis of Gaskets for Hydrogen Fuel Cells (수소 연료전지용 가스켓의 유한요소해석)

  • Cheon, Kang-Min;Jang, Jong-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.95-101
    • /
    • 2021
  • An analysis was conducted to predict the behavior of gasket by applying an optimal-strain energy-density function selected through a uniaxial tensile test and an analysis of the gasket used in an actual hydrogen fuel cell. Among the models compared to predict the materials' properties, the Mooney-Rivlin secondary model showed the behavior most similar to the test results. The maximum stress of the gasket was not significantly different, depending on the location. The maximum surface pressure of the gasket was higher at positions "T" and "Y" than at other positions, owing to the branch-shape effect. In the future, a jig that can measure the surface pressure will be manufactured and a comparative verification study will be conducted between the test results and the analysis results.