• Title/Summary/Keyword: Braking Motion

Search Result 63, Processing Time 0.026 seconds

The Characteristics of Obstacle Gaits in Female Elders after 12 Weeks of an Aquatic Exercise Program (12주간의 수중 운동을 수행 한 여성노인의 장애물 보행 특성)

  • Kim, Suk-Bum;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2009
  • The purpose of this study was to investigate the changes of kinetic and kinematic parameters in obstacle gaits after 12 weeks of an aquatic exercise program. Eight female elders walked in four different heights of obstacles(0, 2.5, 5.1, & 15.2cm) on their self-selected speed. The ROM of hip was significantly increased after the aquatic exercise program. Swing and Stance duration were decreased. The step length was significantly increased and the step width was decreased. After the exercise program the clearance between the right foot and the top of obstacle(except 15.2cm) increased and the crossing speed was increased. The braking force, propulsive force, braking impulse, and propulsive impulse were significantly changed after the aquatic exercise program. The 12 weeks of the aquatic exercise program resulted in lower body strength and balance gains in female elders. The improvements were associated with changes in kinetic and kinematic parameters leading to an obstacle-crossing speed and a safer lower-limb control. The aquatic exercise program is suggested as an effective intervention to promote gait ability and prevent fall-related to the injuries.

The kinematic analysis of the Hurdling of Men's 110m Hurdle (남자 국가대표 110m허들선수의 허들동작에 관한 운동학적 분석)

  • Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to determine the kinematic variables of the hurdling for a korea record holder (A) and a national hurdle representative (B). after the kinematic variables such the distance and the distance and height of C.G, the velocity and the angle were analyzed about the hurdling. The results were summarized as follows; 1. In terms of the distance and the height of C.G, subject A showed long in horizontal distance from C.G to the take-off phase, but showed short in the landing phase. Subject B showed short in horizontal distance from C.G to the take-off phase, and showed long in the landing phase. 2. In terms of the velocity of C.G, Subject A showed fast C.G velocity in horizontal direction to the braking phase, Subject A and B showed slower C.G velority in the landing phase, but Subject A showed height C.G velocity in vertical direction to the to the take-off, the landing, and propulsion phase 3. In terms of the angle of C.G and lean of C.G to front at the braking and the take-off phase. Subject A kept the less angle in the maximum trunk lean to front at the flight phase as comparison with Subject B. 4. In terms of the velocity of the knee and the ankle joint. Subject A showed fast in the resultant velocity of the left ankle joint the take-off phase, but showed slow in the left knee joint. Subject B showed fast in the resultant velocity of the left knee joint the take-off phase, but showed slow in the right knee and the right ankle joint.

Dynamic Analysis of A High Mobility Tracked Vehicle Using Compliant Track Link Model (유연성 궤도 모델을 사용한 고기동성 궤도차량의 동역학 해석)

  • 백운경;최진환;배대성
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1259-1266
    • /
    • 1999
  • The objective of this investigation is to develop a compliant track link model and apply this model to the multi-body dynamic analysis of high mobility tracked vehicles. Two major difficulties encountered in developing the compliant track models. The first one is that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution deals with high oscillatory signals resulting from the impulsive contact forces and stiff compliant elements to represent the joints between the track links. The second difficulty is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. This problem was sloved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios were tested for the high mobility tracked vehicle including accelaeration, high speed cruising, braking, and turning motion in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.

  • PDF

The Effect of Running Speed and Slope on the Lower Extremity Biomechanics (달리기 속도와 경사가 하지관절의 생체역학에 미치는 영향)

  • Kim, Jongbin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.160-167
    • /
    • 2020
  • This study analyzes the effects of changes in running velocity and slope on the biomechanical factors of the lower limb joints. For this purpose, 15 adult males in their 20s ran according to changes in running speed (2.7, 3.3 m/s) and slope ( -9°, -6°, 0°, 6°, 9°) on the treadmill, and their running characteristics (stride length, stride frequency). The range of motion of the lower limb joint and the vertical ground reaction force were greater in UR (p <.05), and the moment of the lower limb joint, braking force, thrust and load factor was large in DR (p <.05). In joint power, the ankle joint was greater in DR, and hip joint was greater in the UR (p <.05). These results show that the injuries of the ankle joint will be greater than other cases when running DR at a speed of 3.3 m/s.

The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running (달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계)

  • Lee, Young Seong;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

Investigation of Biomechanical Factors in Track and Field Javelin Performance: A Multidimensional Analysis of Predictive Variables through Multiple Regression Analysis (육상 창던지기 기록에 미치는 운동학적 요인의 탐색: 다차원적 다중회귀를 활용한 성과 예측 변수 분석)

  • Ho-Jong Gil;Jin Joo Yang;Jong Chul Park;Young Sun Lee;Jae Myoung Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.175-184
    • /
    • 2023
  • Objective: The purpose of this study is to investigate the effects of human motion and javelin kinematics during the energy transfer in javelin throwing on records, and to provide evidence-based training insights for athletes and coaches to enhance records. Method: Three javelin throw athletes (age: 22.67 ± 0.58 years, height: 178.33 ± 7.37 cm, weight: 83.67 ± 1.15 kg) were recruited for this study. Each athlete attempted ten maximum record trials, and the kinematic data from each performance were analyzed to determine their influence on the records. The Theia3d Markerless system was used for motion analysis. Results: Key factors were modeled and identified at each moment. In E1, main variables were COM Y (𝛽 8.162, p<.05) and COM velocity Z (𝛽 -72.489, p<.05); in E2, COM X (𝛽 -17.604, p<.05); in E3, COM X (𝛽 -18.606, p<.05), COM velocity Y (𝛽 38.694, p<.05), and COM velocity X (𝛽 66.323, p<.05). For the javelin throw dynamics in E3, key determinants were Attitude angle and Javelin velocity in the Y-axis. Conclusion: The study reveals that controlled vertical movement, center of mass management during braking, and enhanced pelvic rotation significantly improve javelin throw performance. These kinematic strategies are critical for record enhancement in javelin throwing.

Development of Tire Lateral Force Monitoring Systems Using Nonlinear Observers (비선형 관측기를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • 김준영;허건수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.169-176
    • /
    • 2000
  • Longitudinal and lateral forces acting on tires are known to be closely related to the tract-ability braking characteristics handling stability and maneuverability of ground vehicles. In thie paper in order to develop tire force monitoring systems a monitoring model is proposed utilizing not only the vehicle dynamics but also the roll motion. Based on the monitoring model three monitoring systems are developed to estimate the tire force acting on each tire. Two monitoring systems are designed utilizing the conventional estimation techniques such as SMO(Sliding Mode Observer) and EKF(Extended Kalman Filter). An additional monitoring system is designed based on a new SKFMEC(Scaled Kalman Filter with Model Error Compensator) technique which is developed to improve the performance of EKF method. Tire force estimation performance of the three monitoring systems is compared in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with the combined-slip Magic Formula tire model. The built in our Lab. simulation results show that the SKFMEC method gives the best performance when the driving and road conditions are perturbed.

  • PDF

A Study on the V-skew Model for Minimization of Detent Force and Lateral Force in PMLSM (PMLSM의 디텐트력 및 Lateral Force 최소화를 위한 V-skew 모델에 관한 연구)

  • Hwang, In-Cheol;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.390-397
    • /
    • 2008
  • Permanent Magnet Linear Synchronous Motor (PMLSM) has high efficiency, high energy density, and high control-ability. But, the detent force always is produced by the structure of slot-teeth. There are the disadvantages such as noise and vibration of the apparatuses are induced and the control ability is curtailed because detent force acts as thrust ripple. Therefore, the detent force reduction is an essential requirement in PMLSM. Generally, the method, skewing permanent magnet or slot-teeth, is used to reduce the detent force. But the thrust is decreased at the same time. If permanent magnet is skewed, the lateral force which operates as the perpendicular direction of skew direction is generated in linear guide of PMLSM. So, V-skew model is proposed for the reduction of lateral force. The lateral force acts as braking force in linear motion guide, and it has bad influence to the characteristics of PMLSM. However, these problems will not be solved by 2-dimensional Finite Element Analysis (FEA). So, in this paper 3-dimensional FEA is applied to analyze the PMLSM where permanent magnet is skewed and has overhang. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3-dimensional FEA and the results are compared with experimental values to verify the propriety of analysis.

Steering Control of Differential Brake System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차동 브레이크 시스템의 조향제어)

  • 윤여흥;제롬살랑선네;장봉춘;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.233-237
    • /
    • 2002
  • Vehicle Dynamics Control(VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC. In order to help the car to turn, a yaw moment can be achieved by altering the left/light and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since Fuzzy logic can consider the nonlinear effect of vehicle modeling, Fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

  • PDF

Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator (대형 굴삭기용 주차 브레이크의 마찰 특성 분석)

  • Lee, Y.B.;Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.