• 제목/요약/키워드: Braking Energy

검색결과 221건 처리시간 0.022초

Are Flywheels Right for Rail?

  • Read, M.G.;Smith, R.A.;Pullen, K.R.
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.139-146
    • /
    • 2009
  • Vehicle braking in non-electrified rail systems wastes energy. Advanced flywheel technology presents a way to capture and reuse this braking energy to improve vehicle efficiency and so reduce the operating costs and environmental impact of diesel trains. This paper highlights the suitability of flywheels for rail vehicle applications, and proposes a novel mechanical transmission system to apply regenerative braking using a flywheel energy storage device. A computational model is used to illustrate the operation and potential benefits of the energy storage system.

  • PDF

슈퍼커패시터를 이용한 회생에너지 증대 및 제동에 관한 연구 (A Study of Increasing Regeneration Energy and Braking Using Super Capacitor(EDLC))

  • 권오정;박창권;오병수
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.24-33
    • /
    • 2006
  • This experiment explains about electrical braking equipment which will be used for 1.2kW PEMFC HEV. The equipment is made of BLDC motor and super capacitor(EDLC). The circuit is designed for regeneration braking that can save the energy from low voltage of generation with BLDC motor. Increasing a regeneration energy from braking system is effected with regeneration current and SoC of super capacitor(EDLC). Electrical braking in electrical vehicle is suitable for regeneration braking with dynamic braking together.

전기자동차용 제동 시스템 해석 및 최적화에 관한 연구 (The Analysis and Optimization far the Braking System in Electric Vehicle)

  • 오재응;이준일;이충휘;조용구;이유엽;이정윤
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.172-178
    • /
    • 2003
  • Driving range is one of the main problems in development of Electric Vehicles(EV). The Regenerative. braking system is required to overcome the problem, which converts kinetic energy of the vehicle during braking into electrical energy. This paper discusses the braking system of EV and Robust design especially developed to maximize energy recovery and to optimize braking performance. This is promised to be applied to the design of elements for EV braking system.

마찰에너지율을 이용한 타이어 제동거리 예측 (Braking Distance Estimation using Frictional Energy Rate)

  • 전도형;최주형;조진래;김기전;우종식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

도시철도용 에너지저장시스템 에너지 절감을 현장시험 (Field Test of Energy Storage System on Urban Transit System)

  • 이한민;김길동;안천헌;김영규;김태석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1461-1467
    • /
    • 2009
  • The electric railway is a clean and energy saving system, because it requires relatively less energy than automobiles by transporting the same passengers or goods. Six thousands of vehicles are operated on Korean urban transit system. This system is 95% of regeneration system. Especially, the VVVF-Inverter vehicle has a merit of the highest regeneration rate. Energy consumption is 90% for traction and 10% for auxiliary supply. Braking energy is about 40% of energy consumption. Up to 40% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system) stores the energy generated during braking and discharges it again when a vehicle accelerates. This paper presents field tests about the energy saving rate of the developed ESS. when the ESS is on/off, energy saving rate of the ESS is tested. The verification test in the field focused on energy saving.

  • PDF

철도차량의 비상제동거리 해석 시스템

  • 진원혁;이성창;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.747-750
    • /
    • 1995
  • As railway trains run faster high performance braking system are necessary because more energy needs to be dissipated due to increased kinetic energy. In this work a portable computer based prediction system for emergency braking distance has been developed. The algorithm for the system is based on braking theory and empirical results of actual braking test. The computer is connected to the sensors to measure the velocity and the braking pressure in real train. It is expected that this system will be utilized to predict emergency braking distance during actual operation of the train

  • PDF

스크롤 기기 이용 공압식 회생제동시스템의 연비향상 효과에 관한 연구 (A Theoretical Study on Fuel Economy Improvements by Pneumatic Type Braking Energy Regeneration System Using the Scroll Mechanism)

  • 신동길;김영민;김용래
    • 에너지공학
    • /
    • 제20권4호
    • /
    • pp.286-291
    • /
    • 2011
  • 하이브리드 자동차는 전기방식 회생제동을 이용하여 연비가 우수하다. 본 논문에서는 새로운 공압식 회생제동 장치를 소개하였다. 공압식 회생제동장치는 압축과 팽창기능을 동시에 가지는 스크롤 기구를 이용한다. 차량 감속시에는 스크롤 기기는 압축기로 작동되면서 대기중의 공기를 압축하여 압축탱크에 저장한 후 차량 가속시에는 스크롤기구가 팽창기로 작동되면서 탱크에 저장된 압축공기가 차량 운동에너지로 활용된다. 회생제동장치를 사용함으로써 개선되는 연비를 분석하기 위해, CVS-75 모드 주행조건에서 시뮬레이션을 수행하였다.

유압 축압기식 제동에너지 회생시스템을 장착한 정유압구동식 차량의 모의시험기 개발 (Development of a Simulator of Vehicle Equipped with Hydrostatic Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System)

  • 이성래
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.119-126
    • /
    • 2003
  • The simulator of a vehicle equipped with hydrostatic transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston, pump plate angle and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발 (Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System)

  • 이성래
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

도시철도차량의 회생제동력 분담 효과 분석 (Analysis of the Regenerative Braking Effect to the Urban Transit Vehicles)

  • 우종혁;이주
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1900-1906
    • /
    • 2016
  • Recent energy efficiency policy of green growth for stable power supply is required. Urban transit vehicles is limited to reduce the use of power without reducing the number of runs. Accordingly, when urban rail vehicles is braking, the occurrence of regenerative power is systemically maximized for the purpose of saving energy. As a result when it is braking, the generated power efficiently is used and looking for a way to reduce the electrical energy. In this paper, the brake control system of the Subway Line 3 is analyzed the effect to meet the required regenerative braking produced electricity through minimizing air braking force of service braking.