• 제목/요약/키워드: Braking Distance

검색결과 146건 처리시간 0.028초

위치변화에 따른 영구자석을 이용한 와전류 제동기의 제동특성 (Braking Characteristic of the Eddy-Current Brake with Permanent Magnet Considering Structure Around)

  • 하경호;김영균;홍정표;김규탁;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.305-307
    • /
    • 1999
  • This paper describes the braking performances considering the structures around for the eddy-current brake excited by permanent magnet. As the magnet is excited by permanent magnet, the braking force of this system interferes with the progress of a moving train in normal time. Therefore, it is necessary to determine the reasonable position of eddy current brake from rail. In this paper, the braking force according to the distance from the rail is analyzed by using 2-dimensional finite element method considering the surrounding structure of train.

  • PDF

디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석 (An Analysis of Plastic Deformation Developed During Interference Fitting of Disk Brake Hub Bolt)

  • 이요셉;곽시영;강신일
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.407-411
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit(bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

차량 선회 안정성을 위한 휠 슬립 제어시스템 개발 (Development of a Wheel Slip Control System for Vehicle Cornering Stability)

  • 홍대건;허건수;황인용;선우명호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

도시철도용 전기기계식 제동장치의 특성시험 (Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles)

  • 김민수;오세찬;권석진
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

8$\times$4 차량의 제동특성 시뮬레이션 프로그램 개발 (A Simulation Program for the Braking Characteristics of 8$\times$4 Vehicles)

  • 서명원;박윤기;권성진
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.119-128
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and the road is wet or slippery. To design the air brake system for commercial vehicles, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about an 8$\times$4 vehicle and an air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the computer program. Designers can use this simulation program for understanding the braking characteristics of 8$\times$4 commercial vehicles such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

실차 주행시험을 통한 디스크-패드 마찰계수 측정방법 (Measuring methods for friction coefficient of disc-pad through running test)

  • 목진용;김영국;김석원;박찬경;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF

공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구 (A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line)

  • 박정만;박종진
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

무인 자동차 개발 연구 (Development of the autnomous road vehicle)

  • 최진욱;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.88-93
    • /
    • 1993
  • This paper introduces an ARV(Autonomous Road Vehicle) system which can run on orads without help of a driver by detecting road boundaries through computer vision. This vehicle can also detect obstacles in front through sonar sensors and infrared sensors. This system largely consists of a handle steering module and a braking module. From road boundaries, the steering module determines handle turn angle. The braking module stops or decelerates to avoid collision depending on the relative speeds and distance to the obstacles detected by different sensors. This ARV system has been implemented in a small jeep and can run 30-40 km/h city traffic. In this paper, we illustrate the structure of the ARV systems and its operation principle.

  • PDF

열차제어시스템을 위한 확률적 제동성능분석 (Probabilistic Braking Performance Analysis for Train Control System)

  • 최돈범
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.319-326
    • /
    • 2018
  • 열차제어시스템에서 열차간 추돌을 방지하기 위한 안전간격은 열차의 비상제동에 따른 제동거리를 기반으로 한다. 제동거리 성능평가는 동역학적 해석과 시운전시험을 통한 확인이 있으나 두 방법 모두 차륜과 레일의 점착계수의 약화 등과 같은 조건을 모두 고려할 수 없기 때문에 열차제어시스템의 설계에 활용하기에는 충분하지 않다. 따라서 본 연구에서는 다양한 환경을 고려할 수 있는 몬테카를로 방법을 이용하여 제동성능을 분석하고자 하였다. 제동모델은 비상제동에서 사용하는 공기제동을 기초로 하였으며, 제동압력, 제동효율, 제동 마찰계수, 점착계수, 차량의 질량분포 등을 고려할 수 있도록 모델링하였다. 영향 인자 분포의 변화에 따른 제동성능의 변화를 검토하고 이를 바탕으로 제동장치의 품질 제어를 통해 제동성능은 개선될 수 있음을 확인하였다. 또한, 열차를 구성하는 차량 편성에 따라 제동성능의 변화를 확인하였다. 본 연구의 결과는 향후 열차제어시스템의 안전간격 설계의 기초자료로 활용될 뿐 아니라 철도차량의 제동성능 향상의 근거자료로 활용될 수 있을 것으로 예상된다.

TCMS와 ATC장치간 인터페이스 이중계 구현 및 무축제동 제어방안 (Design of redundancy interface between TCMS and ATC system, and brake control of free-axle system)

  • 홍구선;한신;한정수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1461-1466
    • /
    • 2004
  • Recently Domestic EMU's on board signal systems are gradually changed form Cab signal(Fix Block) to Distance-to-go. Interfaces with on board signal system, TCMS Redundancy structure is mainly required. This paper suggest Manaul/Automatic Driving based on TCMS-ATC interface and design of backup system which is operated by Stan-by Computer when one of it's Local Interface Unit(LIU) is out of oder. For the purpose of Precision Train Stop, Distance-to-go signal system require accuracy speed. Free-axle structure is required for this system This paper suggest Free-axle braking system that lack of brake-force is compensated by the distributed brake-force using TCMS. And one of braking system has out of order, compensation of brake-force for Free-axle system. Then we prove our design to Complete Car Test

  • PDF