• Title/Summary/Keyword: Brake dynamometer

Search Result 114, Processing Time 0.025 seconds

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

A Study Temperature of Break Disc using Two-way Layout (이원 배치법을 이용한 브레이크 디스크의 온도에 관한 연구)

  • Ryu, Mi-Ra;Choi, Ji-Woong;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.94-99
    • /
    • 2012
  • Due to economic growth, the number of cars has grown rapidly and consequently traffic accidents have grown in direct ratio. This reminds us that braking device of a vehicle is an important factor to prevent traffic accidents. Aim these researches to speed and lighten the braking system of vehicles, to lengthen its durability and to shorten the stopping distance. However, it is still difficult to analyze quantitatively and clearly the reason and solution for abnormal wear of disc and pad or judder in flywheel mode. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum temperature by two-way layout. The results shown that coefficient of determination has a fine reliability over 92.57% and temperature is made by two-way layout.

Tribological Properties of Heat-resistant Cast Steel Discs: Effect of Thermal Conductivity (내열 주강 디스크의 마찰특성: 열전도도 영향)

  • Kim, H.S.;Lee, J.S.;Cho, D.H.;Kang, S.W.;Na, T.Y.;Jang, H.
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • The temperature-dependent tribological properties of brake discs for a train were examined in this study. The discs were produced using heat-resistant alloy steel, which showed different thermal conductivity after the heat treatments. A commercial brake friction material was used to evaluate the friction effectiveness, and the friction tests were carried out using a 1/5 scale dynamometer under various initial braking temperature conditions. The results showed that the tribological property of the disc was strongly affected by the heat treatment schedule. At low temperatures (below $250^{\circ}C$), the friction coefficient increased as a function of disc temperature, indicating that frictional heat increased the adhesion between the disc and pad. In addition, fade was observed at high temperatures (above $250^{\circ}C$); it was pronounced in the case of the disc with low thermal conductivity. The different fade resistances observed in the discs with different heat treatment schedules appear to be influenced by microstructural changes such as carbide redistribution occurring during the heat treatments, which affected the thermal conductivity.

Braking Characteristics of Wet-type Multiple Disc Brakes on Friction Materials (마찰재에 따른 휠굴삭기용 습식 다판 디스크 브레이크의 제동특성)

  • Bae, Myung-Ho;Cho, Yon-Sang
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.381-386
    • /
    • 2009
  • In general, a brake system of axle for heavy duty machine as a wheel excavator makes use of wettype multiple disk brakes. These disk bakes are very important parts of heavy duty machine because they are dvanced in durability and braking power, and can be designed compactly. Thus, we adesigned and made wettype multiple disk brakes of axle for the wheel excavator to be localization of these imported all. In this study, wet multiple disk brakes were made a comparative test with the 3 types materials of friction disk by the SAE No.2 dynamometer. The friction characteristics were measured and analyzed to decide a suitable material as wear depth of friction disk and dynamic and static friction coefficient on temperature of oil and applied pressure.

Study on Dependence of Friction Characteristics of Sintered Brake Friction Materials on Graphite Shape and Ratio with regard to Speeding up Rapid Transit System (도시철도 고속화에 대비한 금속계 소결마찰재에서의 흑연 형상 및 비율에 따른 마찰특성 연구)

  • Kim, Young Kyu;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.242-247
    • /
    • 2013
  • This study aims to establish the fundamental basis for the design of materials used in high-speed trains, by using a lab-scale dynamometer to evaluate the characteristic behavior of metallic sintered friction materials in relation to the shape of graphite. The test results clearly demonstrate that when flake graphite and granular graphite are added equivalently, the average coefficient of friction is much lower, and it is less influenced by speed variation; moreover, friction wear is observed to be insignificantly low. Adding flake graphite increases the coefficient of friction, which leads to higher friction wear. In addition, the roughness of the disc surface was equivalent regardless of the shape of the graphite.

Effects of the Flow Characteristics of Helical Intake Port on the Performance and Emission in a Turbocharged DI Diesel Engine. (나선형 흡기포트의 유동특성이 과급식 디젤엔진의 성능 및 배출가스에 미치는 영향)

  • 윤준규;양진승;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.86-96
    • /
    • 2000
  • This study is to consider that the helical intake port flow and fuel injection system have effects on the characteristics of engine performance and emissions in a turbocharged DI diesel engine of the displacement 9.4L. The swirl ratio for ports was modified by hand-working and measured by impulse torque swirl meter, For the effects on performance and emission, the brake torque, BSFC were measured by engine dynamometer and NOx, smoke were by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased, And as the swirl is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by the following applied parameter; the swirl ratio is 2.43, injection timing is BTDC $13^{\circ}$CA and compression is 15.5.

  • PDF

An Experimental Study on the Shift Characteristics of a Metal Belt Type Continuously Variable Transmission (CVT) (금속벨트식 무단변속기(CVT)의 변속특성에 관한 실험적 연구)

  • 이충섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.36-43
    • /
    • 1997
  • To cope with quest to improve the fuel economy and vehicle performance, Continuously Variable Transmission with Changing the speed ratio between minimum and maximum ratio by infinite step, is more efficient than conventional multi-ratio transmission. In this paper, to investigate a specific CVT shift ratio diagram and CVT shift characteristics, CVT vehicle was tested on the proving ground and chassis dynamometer. The test results are as follows; CVT can obtain the excellent vehicle performance and fuel economy changing the shift ratio by infinite step, without rapid change of engine revolution and driving force. And CVT can set up a special shift range that obtains not only the engine brake effect but also the maximum speed driving.

  • PDF

자동차용 마찰재에 사용되는 고체 윤활재($Sb_{2}S_{3}$)와 연마재 (ZrSiO$){4}$)의 상대량에 따른 마찰특성의 변화에 관한 연구

  • Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.30-34
    • /
    • 1996
  • 자동차용 마찰재의 원료로 사용되는 고체 윤활제($Sb_{2}S_{3}$)와 연마재(ZrSiO$){4}$)의 상대량이 다른 3가지의 마찰재를 제조하여 그들의 마찰특성을 자동차용 Brake Dynamometer를 사용하여 연구하였다. 각각의 마찰재에 관하여 자동차 제동시에 나타나는 마찰계수의 변화와 Torque 변화 그리고 시험후의 마찰재와 rotor의 마모량을 측정하였다. 제동특성과 직접 관련 있는 것으로 알려져있는 마찰계수의 안정성은 $Sb_{2}S_{3}$이 상대량이 높을 때 좋은 특성을 나타내었으며, 반면에 ZrSiO$_{4}$의 상대량이 많은 경우에는 마찰계수의 안정성이 저하되었을 뿐 아니라 제동시의 torque 변화량도 증가하여, 자동차의 Judder현상을 해결하는데 좋지않은 경향을 나타내었다. 이는 마찰시에 계면에 형성되는 윤활막의 거동에 의한 현상이며 이때 마찰재 및 상대재의 마모량은 연마재의 양이 증가함에 따라 마모량이 증가 하였다.

  • PDF

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.

A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine (과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.