• Title/Summary/Keyword: Brake disc

Search Result 206, Processing Time 0.032 seconds

The Prediction of Brake Corner Module Squeal Noise Using Participation Factor Analysis (기여도 분석법을 이용한 자동차 브레이크 시스템의 스퀼 소음 예측)

  • Lee, Jong-Ghi;Lim, Hyun-Seok;Kim, Hee-Yong;Baek, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1074-1080
    • /
    • 2009
  • A method for determining the geometric stability characteristics of a brake corner module (BCM) is presented. Since disc brake "squeal" noise typically occurs at unstable resonant frequencies of a system, the likelihood of disc brake squeal for a particular design can be determined. Finite element methods are used to derive complex eigenvalue for a brake corner module. Some unstable modes calculated by finite element methods correspond to squeal noise data. Through kinetic energy participation analysis for each part of BCM, we can efficiently predict squeal noise data.

A study on the Characteristics of Braking for High Speed Train through On-line Test (시운전시험을 통한 고속철도 차량의 제동 특성에 관한 연구)

  • 김석원;김영국;박찬경;목진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.212-217
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely train at its pre-decided position, it is necessary to combine properly the various brakes. The prototype of Korean high speed train (KHST) has been designed, fabricated and tested by the domestic researchers. It has adopted a combined electrical brakes, such as rheostatic brake, regenerative brake and eddy current brake, and mechanical brakes composed of disc brake, wheel disc brake and tread brake. In this paper, the performances and control algorithms of braking system have been reviewed by the experimental method.

  • PDF

Braking Performance Analysis and Inspection of High Speed Train (고속철도 차량의 제동성능해석 및 검증)

  • Lee, Sung-Ho;Kim, Young-Kuk;Kim, Seog-Won;Park, Jin-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.982-987
    • /
    • 2006
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to combine property the various brakes. Generally high speed train has adopted a combined electrical and mechanical (friction) braking system. Electrical brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, we introduce braking performance analysis and inspection though simulation and research to reduce braking distance.

  • PDF

Characteristics of Graphite Particle Size comprised in Metallic Friction Material

  • Kim, Young Gyu;Lee, Jong Seong;Kim, Sang Ho;Lee, Hi Sung
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.152-155
    • /
    • 2012
  • The essential element of brake device for railway vehicle is in demand for higher performance along side the trend of railway vehicle size and speed. Essential element of brake device for high speed train is composed of metallic friction material and brake disc. Thus, brake distance, duration and brake stability shall be determined due to friction materials and friction characteristics. Also friction characteristics are influenced by metallic friction material's properties of matter, manufacturing process and component parts. Various materials and configurations of metallic friction materials are currently being implemented to railway vehicles, For this reason study of friction characteristics in accordance with materials is necessary, but study of these important elements are not actively being accomplished. Therefore, in this study, wished to study the graphite's friction characteristic comprised in friction material in accordance with particle size and amount of volume through lab-scale test.

Test Analysis of a Parking Brake for the Track Drive Unit of an Excavator (굴삭기 주행모터용 주차브레이크의 시험분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1157-1162
    • /
    • 2011
  • The parking brake is an essential unit embedded in the track-driving motor of an excavator. The parking brake plays an important role in keeping the excavator in place not only when it is parked, but also during the digging operation. In fact, the load placed on the parking brake during the digging operation is significantly higher than the parking load, because the impact and rating loads caused by the bucket digging force cycle frequently and have very high load ranges. Therefore, the load conditions during the digging operation should be taken into account in the parking brake certification test. In this study, a series of experiments was carried out in which various operating pressures were applied to the parking brake, where repeated loads were reciprocally placed on the brake by locking the multifriction disc and releasing the hydraulic cylinder. The characteristics of the parking brake were investigated by comparing the obtained experimental results and the theoretical design specifications.

A Fatigue Analysis of Thermal Shock Test in Brake Disc Material for Railway (철도차량 제동디스크 소재 열충격 실험에 대한 피로해석)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.615-620
    • /
    • 2010
  • During braking of railway vehicles the repetitive thermal shock leads to thermal cracks on disc surface, and the lifetime of brake disc is dependent on the number of trimming works for removing these thermal cracks. Many tries for development of high heat resistant brake disc to extend the disc life and to warrant reliable braking performance has been continued. In present study, we carry out the computational fatigue analysis for thermal fatigue test in three candidate materials which were made to develop new high heat resistant material. Using FEM, we simulate thermal fatigue test in three candidate materials and conventional disc material. We then estimate the number of cycle to thermal crack initiation based on data from mechanical fatigue tests, and the results are compared with each material. For each material, the correction factor for $N_{f-40}$ which is the number of cycles when crack over $40{\mu}m$ was observed in thermal fatigue test is decided. From this study, we can verify the performance of thermal fatigue test system and suggest a qualitatively comparative method for heat resistance by FEM analysis of thermal shocking phenomenon.

  • PDF