• Title/Summary/Keyword: Brake

Search Result 1,651, Processing Time 0.026 seconds

Evaluation Technology for Brake Performance of Tread Brake Shoe (답면 브레이크 슈의 제동성능 평가 기법)

  • Choi Kyung-Jin;Lee Hi-Sung
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • In tread brake of freight cars, brake force is produced by the friction between the wheel and the brake shoe. Friction coefficients associated with the brake power, weight variation and brake shoe types should be sensitively treated as the design parameters. The conditions of the car, empty and loaded, should also be taken into consideration in brake force design and the control of brake force has some limitations in terms of the brake system design so that the brake friction materials selection should be considered as important measures to solve that difficulties. Friction characteristics of brake friction materials should remain within the range of maximum and minimum value and the friction performance should remain stable regardless of brake time and temperature. This study presented an experimental evaluation method to secure optimum brake performance by keeping safe brake effect and brake distance by the friction coefficient of the brake shoe of the freight cars.

A Study on Velocity-Brake Force Resulted from Deceleration Signal (감속도 신호에 의한 속도-제동력 고찰)

  • Lee, U-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.616-620
    • /
    • 2003
  • Brake action is important in train operation. In case of diesel motor cas, coachs and wagon, the brake system is only act on the stop of train, but it is emphasis on safety and convenience in urban transit system such as EMU, subwar, AGT, etc. Brake of EMU has two types. one is called service brake that is used at normal operation. The other is called emergency brake. it is used at emergency operation. Service brake bring a EMU to a halt through a blending brake that form electronic brake and frictional brake. Generally EMU compose motor car and trailer car. Blending brake bring a EMU to a halt through a blending brake that form electronic brake of motor car and frictional brake of trailer car. Blending braking technology have different characteristics each nations or manufacturing companies. but deceleration command that is parameter decide blending brake. According to deceleration command, electronic brake and frictional brake are applied differently So braking power is different. electronic brake and frictional brake must be used appropriately as deceleration command. Also braking facilities must be stopped EMU more economically and safely through revision of algorism about blending brake according to output diagram. Thus The purpose of paper is to propose blending braking control way as consideration of braking output diagram used deceleration command that influence blending brake of EMU.

  • PDF

A Study on Application of Hydraulic Brake System (전동차 제동기의 유압화에 관한 연구)

  • Lee, Han-Min;Kim, Gil-Dong;Oh, Seh-Chan;Park, Sung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.169-171
    • /
    • 2008
  • The brake systems of the rolling stocks are generally consisted of electrical and mechanical brake systems. Because of its inherent structure of the each brake system, the electrical brake system is mainly used at the high speed range while the mechanical brake system is used at the relatively lower speed range. It is desirable for the rolling stocks to apply the entire electrical brake system. However, since the brake force from electric brake system is not enough to stop the rolling stock within the legal stop distance. Therefore, the mechanical brake system is indispensable to rolling stocks. In general, the vast majority of the world trains are equipped with mechanical braking systems which use compressed air as the force to push block on to wheels or pads on to discs. These mechanical systems are known as air brake or pneumatic brakes. For the air brake system, basically huge scale air compressor is equipped and the long pipe line is complexively connected. Since mass of these air brake components, it is difficult to be a light weight equipment and the long pipe line raise the maintenance problem. In order to overcome these problems of air brake system, the hydraulic brake system is proposed in this research. The hydraulic brake system makes the whole weight of brake equipment be light and large braking force can be applied. Therefore, in this research, the validity and advantages of applying the hydraulic brake system are reviewed.

  • PDF

The Development for Blending Brake System of Electrical Multiple Unit used by Electric Brake (전기제동을 이용한 전동차의 혼합제동장치의 개발방향)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.155-157
    • /
    • 2008
  • An electric multiple unit(EMU) consists of car body, bogie and brake equipment which is directly related to safety and performance of the motorcar. The blending brake mixed an electric brake and a friction brake is to reduce the energy by applying the restoration energy caused when the motorcar is stopped to car lines and to curtail the maintenance cost by saving the friction brake use. We have developed the advanced EMU since 2004, based on the experiences on the standard EMU in 1999, and we develop the installation which minimizes the use rate of the friction air brake by maximizing the electric brake use in the existing blending brake. We could accomplish the goal by improving the motorcar's Performance and solving the restoration energy's deficit by the friction brake. Actually, when it comes to the test results of standard EMU, except the service brake, in most conditions, we use electric brake to meet the requirements of the necessary brake power, exclusive when the motorcar leaves and stops. Therefore, in this paper, we consider the design concept of motorcar's blending brakes and suggest the way to develop the blending brake using the electric brake maximumly, which is caused by adequately controling the electric brake and the restoration brake.

  • PDF

A Study on Pressure Control Method of Train Brake System (철도차량 제동기의 압력제어에 관한 연구)

  • Lee, Han-Min;Kim, Gil-Dong;Park, Sung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1909-1915
    • /
    • 2008
  • The brake systems of the rolling stocks are generally consisted of electrical and mechanical brake systems. Because of its inherent structure of the each brake system, the electrical brake system is mainly used at the high speed range while the mechanical brake system is used at the relatively lower speed range. It is desirable for the rolling stocks to apply the entire electrical brake system. However, since the brake force from electric brake system is not enough to stop the rolling stock within the legal stop distance. Therefore, the mechanical brake system is indispensable to rolling stocks. In general, the vast majority of the world trains are equipped with mechanical braking systems which use compressed air as the force to push block on to wheels or pads on to discs. These mechanical systems are known as air brake or pneumatic brakes. For the air brake system, basically huge scale air compressor is equipped and the long pipe line is complexively connected. Since mass of these air brake components, it is difficult to be a light weight equipment and the long pipe line raise the maintenance problem. In order to overcome these problems of air brake system, the hydraulic brake system is proposed in this research. The hydraulic brake system makes the whole weight of brake equipment be light and large braking force can be applied. Therefore, in this research, the validity and advantages of applying the hydraulic brake system are reviewed.

  • PDF

The Design of Hydraulic Brake Control System used on Blending Brake Function (혼합제동기능을 이용한 유압제동 제어시스템 설계)

  • Lee, Woo-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1809-1812
    • /
    • 2013
  • The bogie of monorail vehicles applies rubber wheel system not steel wheel system. In addition, The structure of the bogie is very complicated because vehicle operates on the elevated road and vehicle drives with wrapping the guide way. When the monorail vehicle applies air brake system, lower device of vehicle may be complex and some devices may be limited. On the other hand, hydraulic brake equipment is compact and not weighing. Braking force is also outstanding compared with air brake so the hydraulic brake equipment is suitable for monorail vehicle. Also urban transit system such as monorail, applies mixed system both friction brake and electric brake in order to save electric energy. But application case of hydraulic brake in the country is very rare because hydraulic brake have difficulty in satisfaction of control requirement and maintenance. Therefore, this study suggests ways to design hydraulic brake system with blending brake for monorail vehicle and applies the ways to future monorail.

Experimental Study on the Pressure Characteristics of Pneumatic Brake for Freight Train (화물열차의 공기제동 압력 특성에 관한 실험적 연구)

  • Nam, Seong-Won;Moon, Kyung-Ho;Lee, Dong-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.593-598
    • /
    • 2000
  • Experimental study is conducted to clarify the pneumatic characteristics of brake system for freight train. Empty-load and diaphragm brake systems are mainly installed in the freight trains owned by KNR(Korean National Railroad). Experimental train set is composed of sixteen freight train and one diesel locomotive that are now in use. From the experimental results, in case of commercial brake, empty-load brake system responds to the brake command more slowly than the diaphragm brake system. But, in case of release command, the response time of diaphragm brake system is shorter than that of empty-load one. In the emergency brake test, the decreasing rate of brake pipe pressure of tenth car is almost same that of decreasing rate of commercial brake service.

  • PDF

A Design of Brake Control System for Electrical Multiple Unit (전동차 제동제어장치 설계)

  • 이우동;최규형
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.151-156
    • /
    • 2000
  • The brake system is important to stop train safely. The train is sloped by regenerative brake and pneumatic brake which are continuously blended at service brake. When service is applied to train, it is controlled by train weight and brake command. The jerk limitation function is applied for impulseless smoothing braking. All brake applications in service condition have a function of the variable load control to keep the braking effort in proportion to each car load. All of control function are performed by brake controller. Therefore, we will propose the design of brake control system in order to control efficiently

  • PDF

Numerical Prediction of Brake Fluid Temperature Considering Materials of Piston During Braking (제동시 피스톤 소재를 고려한 브레이크 오일 온도의 수치적 예측)

  • 김수태;김진한;김주신
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.445-450
    • /
    • 2004
  • Recently, many studies have been performed and good results have been reported in literature on the prediction of the brake disk temperature. However, study on the brake fluid temperature is rarely found despite of its importance. In this study, brake fluid temperature is predicted according to material property of brake piston. For the analysis, a typical disk-pad brake system is modeled including the brake disk, pad, caliper, piston and brake fluid. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady-state temperature distribution are analyzed by using the finite element method and numerical results are compared with the vehicle test data

  • PDF

Analysis of Natural Frequencies and Squeal Noise of KTX Brake Unit (KTX 제동장치의 고유진동수와 스퀼소음 분석)

  • Goo, ByeongChoon;Na, InKyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.954-961
    • /
    • 2014
  • Brake squeal noise of KTX is very uncomfortable to passengers and workers in stations. A lot of study has been conducted to inquire into the mechanism of the squeal noise. But understanding of the brake squeal noise is still challenging. In this study, we developed a full-scale tester equipped with a KTX mechanical brake unit. And we measured the vibrational characteristics of each component of the brake unit and compared them with frequency response functions of brake squeal noise measured also in the tester. It was found that the brake squeal noise was more closely related to the vibrational characteristics of the brake pads and hangers in friction condition than those of free components.