• Title/Summary/Keyword: Brain plasticity

Search Result 155, Processing Time 0.031 seconds

Functional Reorganization Associated with Semantic Language Processing in Temporal Lobe Epilepsy Patients after Anterior Temporal Lobectomy: A Longitudinal Functional Magnetic Resonance Image Study

  • Kim, Jae-Hun;Lee, Jong-Min;Kang, Eun-Joo;Kim, June-Sic;Song, In-Chan;Chung, Chun-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2010
  • Objective: The focus of this study is brain plasticity associated with semantic aspects of language function in patients with medial temporal lobe epilepsy (mTLE) Methods: Using longitudinal functional magnetic resonance imaging (fMRI), patterns of brain activation were observed in twelve left and seven right unilateral mTLE patients during a word-generation task relative to a pseudo-word reading task before and after anterior temporal section surgery. Results: No differences were observed in precentral activations in patients relative to normal controls (n = 12), and surgery did not alter the phonological-associated activations. The two mTLE patient groups showed left inferior prefrontal activations associated with semantic processing (word-generation>pseudo-word reading), as did control subjects. The amount of semantic-associated activation in the left inferior prefrontal region was negatively correlated with epilepsy duration in both patient groups. Following temporal resection, semantic-specific activations in inferior prefrontal region became more bilateral in left mTLE patients, but more left-lateralized in right mTLE patients. The longer the duration of epilepsy in the patients, the larger the increase in the left inferior prefrontal semantic-associated activation after surgery in both patient groups. Semantic activation of the intact hippocampus, which had been negatively correlated with seizure frequency, normalized after the epileptic side was removed. Conclusion: These results indicate alternation of semantic language network related to recruitment of left inferior prefrontal cortex and functional recovery of the hippocampus contralateral to the epileptogenic side, suggesting an intra- and inter-hemispheric reorganization following surgery.

Chronic cerebral hypoperfusion and plasticity of the posterior cerebral artery following permanent bilateral common carotid artery occlusion

  • Cho, Kyung-Ok;Kim, Seul-Ki;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2017
  • Vascular dementia (VaD) is a group of heterogeneous diseases with the common feature of cerebral hypoperfusion. To identify key factors contributing to VaD pathophysiology, we performed a detailed comparison of Wistar and Sprague-Dawley (SD) rats subjected to permanent bilateral common carotid artery occlusion (BCCAo). Eight-week old male Wistar and SD rats underwent BCCAo, followed by a reference memory test using a five-radial arm maze with tactile cues. Continuous monitoring of cerebral blood flow (CBF) was performed with a laser Doppler perfusion imaging (LDPI) system. A separate cohort of animals was sacrificed for evaluation of the brain vasculature and white matter damage after BCCAo. We found reference memory impairment in Wistar rats, but not in SD rats. Moreover, our LDPI system revealed that Wistar rats had significant hypoperfusion in the brain region supplied by the posterior cerebral artery (PCA). Furthermore, Wistar rats showed more profound CBF reduction in the forebrain region than did SD rats. Post-mortem analysis of brain vasculature demonstrated greater PCA plasticity at all time points after BCCAo in Wistar rats. Finally, we confirmed white matter rarefaction that was only observed in Wistar rats. Our studies show a comprehensive and dynamic CBF status after BCCAo in Wistar rats in addition to severe PCA dolichoectasia, which correlated well with white matter lesion and memory decline.

Effects of Taro Extract on Brain Resilience in In Vitro Parkinson's Disease Model Induced by 6-Hydroxydopamine (6-Hydroxydopamine로 유도된 In Vitro 파킨슨병 모델에서 토란추출물의 Brain Resilience에 미치는 영향)

  • Cho, Hyeyoung;Kang, Kyoungah
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.4
    • /
    • pp.223-231
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the effects of taro extract on brain resilience in in vitro Parkinson's disease model induced by 6-hydroxydopamine (6-OHDA). Methods: To induce a neuroinflammatory reaction and the in vitro Parkinson's disease model, SH-SY5Y cells were stimulated with lipopolysaccharide (LPS) and 6-OHDA, respectively. After that, cells were treated with at various concentrations (1, 5, and 10 mg/mL) of taro extract. Then nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, synaptophysin (SYP) and growth associated protein (GAP)-43 messenger ribonucleic acid (mRNA) expression level were measured. Results: Taro extract significantly suppressed LPS-induced NO production. Meanwhile, iNOS and IL-6 mRNA expression decreased in a dose-dependent manner. In addition, taro increased the mRNA expression of SYP and GAP-43 mRNA. Conclusion: These findings indicate that taro played an important role in brain resilience by inhibiting neuronal cell death and promoting neurite outgrowth, synaptogenesis, and neural plasticity. The results of this study suggest that taro may contribute to the prevention of neurodegenerative disease and become a new and safe therapeutic strategy for Parkinson's disease.

Gene repressive mechanisms in the mouse brain involved in memory formation

  • Yu, Nam-Kyung;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.199-200
    • /
    • 2016
  • Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls.

The Development of Serious Game for the Cognitive Ability Training using Smart Device (스마트디바이스를 활용한 인지 능력 훈련 기능성 게임 개발)

  • Yang, Yeong-Wook;Lim, Heui-Seok
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.23-31
    • /
    • 2011
  • The cognitive abilities are functions in human brain. They are closely with the real life. The cognitive abilities are likely to be decreased when human gets older and older. Fortunately, due to the plasticity of human brain, it is possible to help recover and rehabilitate brain function. Those efforts are called brain training and cognitive ability training. The cognitive ability training needs continuous trials and efforts. But many users feel boring because of simple repetitive works. This paper proposes a cognitive training system implemented in a smart device. The proposed system is designed to make users to focus on the repetitive training by using game-based tasks on the smart device. It shows that the proposed system is effective to attention and flexible on cognitive training game.

Role of Carbon Monoxide in Neurovascular Repair Processing

  • Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.

Development of Wireless Neuro-Modulation System for Stroke Recovery Using ZigBee Technology (ZigBee를 이용한 뇌졸중 치료용 무선 전기 자극기 개발)

  • Kim, G.H.;Ryu, M.H.;Shin, Y.I.;Kim, H.I.;Kim, N.G.;Yang, Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2007
  • Stroke is the second most significant disease leading to death in Korea. The conventional therapeutic approach is mainly based on physical training, however, it usually provides the limited degree of recovery of the normal brain function. The electric stimulation therapy is a novel and candidate approach with high potential for stroke recovery. The feasibility was validated by preliminary rat experiments in which the motor function was recovered up to 80% of the normal performance level. It is thought to improve the neural plasticity of the nerve tissues around the diseased area in the stroked brain. However, there are not so much research achievements in the electric stimulation for stroke recovery as for the Parkinson's disease or Epilepsy. This study aims at the developments of a wireless variable pulse generator using ZigBee communication for future implantation into human brain. ZigBee is widely used in wireless personal area network (WPAN) and home network applications due to its low power consumption and simplicity. The developed wireless pulse generator controlled by ZigBee can generate various electric stimulations without any distortion. The electric stimulation includes monophasic and biphasic pulse with the variation of shape parameters, which can affect the level of recovery. The developed system can be used for the telerehabilitation of stroke patient by remote control of brain stimulation via ZigBee and internet. Furthermore, the ZigBee connection used in this study provides the potential neural signal transmission method for the Brain-Machine Interface (BMI).

Treatment and prognosis of neonatal seizures (신생아 발작의 치료와 예후)

  • Eun, So-Hee;Eun, Baik-Lin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.9
    • /
    • pp.971-975
    • /
    • 2009
  • Seizures in the neonatal period are common and frequently indicate serious underlying brain injury. Neonatal seizures continue to present a diagnostic and therapeutic challenge to pediatricians because recognition and classification of neonatal seizures remain problematic, particularly when clinicians rely only on clinical criteria. Neonatal seizures can permanently disrupt neuronal development, induce synaptic reorganization, alter plasticity, and "prime" the brain to increased damage from seizures later in life. Since neonatal seizures predict an increased risk for later epilepsy and other neurological sequelae, accurate diagnoses are needed for aggressive antiepileptic drug use. The present review summarizes the treatment and prognosis of neonatal seizures.

Transcriptional regulatory network during development in the olfactory epithelium

  • Im, SeungYeong;Moon, Cheil
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.599-608
    • /
    • 2015
  • Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.

Detection and Diagnosis of Neonatal Seizures (신생아 발작의 발견 및 진단)

  • Eun, Baik-Lin
    • Neonatal Medicine
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Seizures are the most common clinical manifestation of a neurologic insult during the neonatal period. Neonatal seizures continue to present a diagnostic and therapeutic challenge to pediatricians because the recognition and classification of neonatal seizures remains problematic, particularly when clinicians rely only on clinical criteria. Neonatal seizures can permanently disrupt neuronal development, induce synaptic reorganization, alter plasticity, and "prime" the brain to increased damage from seizures later in life. Since neonatal seizures, particularly status epilepticus, predict an increased risk for later epilepsy and other neurologic sequelae, accurate diagnoses are needed for aggressive antiepileptic drug use. The present review summarizes the pathophysiology, etiology, and diagnosis of neonatal seizures.