• Title/Summary/Keyword: Brain metabolism

Search Result 289, Processing Time 0.027 seconds

The Effect of Ethanol Extracts from Fish Flour on the Nucleic Acid Metabolism in Rats (소어분(小魚粉)의 주정추출성분(酒精抽出成分)이 백서(白鼠)의 핵산대사(核酸代謝)에 미치는 영향)

  • Oh, Seoung-Ho;Koh, Jin-Bog;Choi, Jeun-Duo;Lee, Myoung-Hoon
    • Journal of Nutrition and Health
    • /
    • v.5 no.3
    • /
    • pp.127-133
    • /
    • 1972
  • This study was designed to observe the effect of ethanol extracts from fish flour on the nucleic acid metabolism in rats. Young rats, weighing 75-85g were used as the experimental animals and diet used were 8 kinds; diet supplemented with 10% fish flour, diets which were supplemented with the extracts and or remainders of fish flour after extracting by either 76% or 96% ethanol to the rice diet, respectively, and diet supplemented with 6% casein. After feeding corresponding diet for 40 days, RNA and DNA contents, and DNase activities in the liver, kidney and braid were determined. The results obtaioed from this study are summarized as follows: 1. The RNA contents of the ethanol-treatment groups are, in the liver and kidney, similar to, and in the brain, generally higher than, that of the control group. 2. The DNA contents of each organ show no difference between ethanol-treatment groups and control group, but in the liver, of ethanol extrat groups are lower than casein group. 3. the DNase activity of each organ in the ethanol-treatmeut groups, is generally lower than the control group. The above results indicate that ethanol extracts from fish flour have influence on the nucleic acid metabolism.

  • PDF

Physiological Function of Insulin-like Peptides in Insects (곤충 insulin-like peptide의 생리 조절 작용)

  • Kim, Doo Kyung;Lee, Jaemin
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • Insulin and insulin-like growth factor-1 (IGF-1) are hormones that play an important role in the physiological regulation of metabolism, growth, and longevity in vertebrates. Likewise, insulin-like peptides (ILPs), which are structurally similar to insulin and IGF-1, are crucial in insect physiology. In this review, we present an integrated summary of insect ILPs and their receptor signaling, which has been shown to be comparable to insulin and IGF-1 receptor signaling in vertebrates based on genetic studies of Drosophila melanogaster. Additionally, we review the control of ILP synthesis and secretion in the brain in response to nutrition, as well as the ILPs' physiological role in insect metabolism. Moreover, we discuss the contribution of ILPs to growth, development, reproduction, and diapause. Finally, we consider the possibility of targeting ILP receptor signaling in pest management.

Fuctional Relationship between Rate of Fatty Acid Oxidation and Carnitine Palmitoyl Transferase I Activity in Various Rat Tissues

  • Cho, Yu-Lee;Do, Kyung-Oh;Kwon, Tae-Dong;Jang, Eung-Chan;Lee, Keun-Mi;Lee, Suck-Kang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.207-210
    • /
    • 2003
  • Lipids play many structural and metabolic roles, and dietary fat has great impact on metabolism and health. Fatty acid oxidation rate is dependent on tissue types. However there has been no report on the relationship between the rate of fatty acid oxidation and carnitine transport system in outer mitochondrial membrane of many tissues. In this study, the rate of fatty acid oxidation and carnitine palmitoyltransferase (CPT) I activity in the carnitine transport system were measured to understand the metabolic characteristics of fatty acid in various tissues. Palmitic acid oxidation rate and CPT I activity in various tissues were measured. Tissues were obtained from the white and red skeletal muscles, heart, liver, kidney and brain of rats. The highest lipid oxidation rate was demonstrated in the cardiac muscle, and the lowest oxidation rate was in brain. Red gastrocnemius muscle followed to the cardiac muscle. Lipid oxidation rates of kidney, white gastrocnemius muscle and liver were similar, ranging from 101 to 126 DPM/mg/hr. CPT I activity in the cardiac muscle was the highest, red gastrocnemius muscle followed by liver. Brain tissue showed the lowest CPT I activity as well as lipid oxidation rate, although the values were not significantly different from those of kidney and white gastrocnemius muscle. Therefore, lipid oxidation rate was highly (p<0.001) related to CPT I activity. Lipid oxidation rate is variable, depending on tissue types, and is highly (p<0.001) related to CPT I activity. CPT I activity may be a good marker to indicate lipid oxidation capacity in various tissues.

Effects of Rhodiola Rosea on Anti-Fatigue and Hypothalamic IEGs Expressions of Forced Swimming Rats (홍경천(紅景天)이 강제유영 흰쥐의 항피로 및 시상하부 IEGs 발현에 미치는 영향)

  • Ryu, Sa-Hyun;Kim, Sun-Yeou;Jung, Hyuk-Sang;Sohn, Nak-Won;Sohn, Young-Joo
    • The Korea Journal of Herbology
    • /
    • v.23 no.4
    • /
    • pp.9-19
    • /
    • 2008
  • Objectives: In this study the authors investigated effects of the ethanolic extract of Rhodjola Rosea(HKC) on fatigue and hypothalamic IEG expression in rat forced swimming(FS) model. Methods: Sprague-Dawley rats were administered HKC extract(25 mg/100g, p.o.) for 3 days prior to FS, some rats underwent 10 min FS and others exhaustive forced swimming(EFS). In addition, other rats were administered extract at different times after EFS over 3 consecutive days. Results: When HKC administered before 10 mins of FS, serum actate dehydrogenase(LDH) and creatine phosphokinase(CPK) activities were significantly lower than control group. When HKC administered prior to EFS, blood lactate was significantly lower versus control group. When HKC was administered after EFS, blood lactate(at 6 and 24 hours after EFS) were significantly lower and serum LDH, CPK activities(at 24 hours after EFS) were significantly lower versus control group. When HKC was administered after EFS, c-Fos positive neurons in hypothalamic periventricular area(PVA), medial part(mPVN) and anterior hypothalamic nucleus caudal part(AHC) were significantly lower at 24 hours after EFS than in control group. HSP-72 positive neuron numbers in hypothalamus were significantly lower at 24 hours after EFS than in control group. Finally, when HKC was administered prior to 10 mins FS, HIF-$1{\alpha}$ expression in the gastrocnemius muscle was significantly increased. Conclusions: These results suggest that HKC extract has an anti-fatigue effect, and it reduces neuronal cell stress responses induced by physical stress by having a beneficial effect on lactate metabolism.

  • PDF

Effect of Aloe on Learning and Memory Impairment Animal Model SAMP8 II. Feeding Effect of Aloe on Lipid Metabolism of SAMP8 (기억. 학습장애 동물모델 SAMP8에 미치는 알로에(Aloe vera)의 영향 II. SAMP8의 지질대사에 미치는 알로에의 투여효과)

  • Choi, Jin-Ho;Kim, Dong-Woo;Yoo, Je-Kwon;Han, Sang-Sub;Shim, Chang-Sub
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.178-184
    • /
    • 1996
  • Aloe(Aloe vera LINNE) has been used as a home medicine for the past several thousand in the world, and has been studied on various chronic degenerative diseases such as atherosclerosis, myocardiac infarction and hypertension. SMAP8, learning and memory impairment animal mode, were fed basic or experimental diets with 1.0% of freeze dried(FD)-Aloe powder for 8 months. This study was designed to investigate the effects of Aloe on body weight gain, grading score of senescence(GSS), triglyceride, total and LDL-cholesterol levels, and atherogenic index in serum of SAMP8, and also designed to investigate the effects of Aloe on cholesterol accumultions in mitochondria and microsome fractions of SAMP8 brain. Body weight gain was consistently lower in aloe group than in control group, but no significantly differences between them. Grading score of senescence resulted ina marked decreases pf 20% in 1.0% Aloe group compared with control group. Administrations of 1.0% aloe resulted ina marked decreases in 15% and 20% of triglyceride and cholesterol levels, respectively, and also significantly decreased in 15% of LDL-cholesterol levels and atherogenic index in serum of SAMP8 compared with control group. Cholesterol accumulations were significantly inhibited in 20% and 10% of mitochondria and microsome fractions of SAMP8 brain, respectively, by administration of 1.0% Aloe. These results suggest that administration of Aloe mau not only effectively inhibit chronic degenerative diseases in serum of SAMP8, but may also improve learning and memory impairments of SAMP8 brain.

  • PDF

A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease

  • Li, Naijing;Liu, Ying;Li, Wei;Zhou, Ling;Li, Qing;Wang, Xueqing;He, Ping
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Background: Alzheimer's disease (AD) is a progressive brain disease, for which there is no effective drug therapy at present. Ginsenoside Rg1 (G-Rg1) and G-Rg2 have been reported to alleviate memory deterioration. However, the mechanism of their anti-AD effect has not yet been clearly elucidated. Methods: Ultra performance liquid chromatography tandem MS (UPLC/MS)-based metabolomics was used to identify metabolites that are differentially expressed in the brains of AD mice with or without ginsenoside treatment. The cognitive function of mice and pathological changes in the brain were also assessed using the Morris water maze (MWM) and immunohistochemistry, respectively. Results: The impaired cognitive function and increased hippocampal $A{\beta}$ deposition in AD mice were ameliorated by G-Rg1 and G-Rg2. In addition, a total of 11 potential biomarkers that are associated with the metabolism of lysophosphatidylcholines (LPCs), hypoxanthine, and sphingolipids were identified in the brains of AD mice and their levels were partly restored after treatment with G-Rg1 and G-Rg2. G-Rg1 and G-Rg2 treatment influenced the levels of hypoxanthine, dihydrosphingosine, hexadecasphinganine, LPC C 16:0, and LPC C 18:0 in AD mice. Additionally, G-Rg1 treatment also influenced the levels of phytosphingosine, LPC C 13:0, LPC C 15:0, LPC C 18:1, and LPC C 18:3 in AD mice. Conclusion: These results indicate that the improvements in cognitive function and morphological changes produced by G-Rg1 and G-Rg2 treatment are caused by regulation of related brain metabolic pathways. This will extend our understanding of the mechanisms involved in the effects of G-Rg1 and G-Rg2 on AD.

Mutant Presenilin 2 Causes Abnormality in the Brain Lipid Profile in the Development of Alzheimer's Disease

  • Nguyen, Hong Nga;Son, Dong-Ju;Lee, Jae-Woong;Hwang, Dae-Youn;Kim, Young-Kyu;Cho, Jeong-Sik;Lee, Ung-Soo;Yoo, Hwan-Soo;Moon, Dong-Cheul;Oh, Ki-Wan;Hong, Jin-Tae
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.884-889
    • /
    • 2006
  • Mutation in the presenilin 2 (PS2mt) is known to be one of factors involved in the development of Alzheimer's disease (AD). It was recently revealed that an abnormality of lipid metabolism is a phenomenon occurring in AD. Therefore, the aim of this study was to investigate the potential relationship between the mutation of PS2 and alterations of the lipid profile within the brain. The results showed there increases in the levels of cholesterol, low density lipoprotein and triglyceride, but a decrease in the level of high density lipoprotein in brain tissues expressing mutant PS2. These findings indicated that PS2mt is involved in the abnormalities of the lipid profile, which could cause or result in the development of AD.

${\ell}-Deprenyl$ (Selegiline) Prevents 6-Hydroxydopamine-induced Depletion of Dopamine and Its Metabolites in Rat Brain (6-하이드록시도파민으로 유도된 흰주 뇌내의 도파민 고갈에 대한 $\ell$-디프레닐의 억제효과)

  • 김은미;김선춘;정희선;김화정
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • Whereas as selective inhibitor of monoamine oxidase type B, ${\ell}-deprenyl$ (selegiline), is now widely used in the treatment of Parkinson's disease, the precise action mechanism of the drug remains elusive. In this study, to investigate protective effect of ${\ell}-deprenyl$ against the dopamine depletion induced by 6-hydroxydopamine (6-OHDA), the changes in tissue contents of dopamine, serotonine (5-HT) and their metabolites by ${\ell}-deprenyl$ were examined in intact and 6-OHDA-lesioned rat brain. In intact rats, a single intraperitoneal (i.p.) administration of ${\ell}-deprenyl$ showed a no change in striatal dopamine and its metabolites at low concentrations (0.25 and 1 mg/kg), but significantly inhibited dopamine metabolism at a higher concentration (10 mg/kg). The repeated administration of ${\ell}-deprenyl$ (0.25 and 1 mg/kg, i.p., for 21 consecutive days) reduced the contents of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) in dose-dependent manners without changes in dopamine content. Bilateral intracerebroventricular (i.c.v) infusion of 6-OHDA ($100{\;}\mu\textrm{g}/10{\;}{\mu}{\ell}/hemisphere$) depleted dopamine in striatum and septum by 81% and 90% respectively. When rats were pretreated with ${\ell}-deprenyl$ before 6-OHDA administration, the striatal and septal dopamine levels were significantly increased by about 3.0-fold and 3.4-fold, respectively, compared to the untreated 6-OHDA-lesioned rat. Pretreatment of ${\ell}-deprenyl$ also significantly enhanced the dopmaine metabolites, DOPAC, HVA and 3-methoxytyramine, in the striatum, and DOPAC in the septum. These results indicate that a ${\ell}-deprenyl$ pretreatment prevents 6-OHDA-induced depletion of striatal dopamine and its metabolites.

  • PDF

The Effect of Puerariae thubergiana Bentham Extract on Brain Tissue in Alcohol-Treated Rats (칡추출물이 알코올을 급여한 흰쥐의 뇌조직에 미치는 영향)

  • 김명주;조수열
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.669-675
    • /
    • 2000
  • This study investigated the effect of Puerariae Flos (PF; flower of Puerariae plant) and Puerariae Radix (PR; root of Puerariae plant) water extracts on the activities on the activities of ethanol-metabolizing enzymes and free radical generating/scavenging enzymes of brain in ethanol-treated rats. Five groups of male Sprague-Dawley rats were orally administered ethanol (25%, v/v) 5 g/kg body weight/day, and sacrificed 5 weeks post treatment. PF and PR water extracts were supplemented in a diet based on 1.2g (I) or 2.4 g (II) raw PF or PR/kg body weight/day. Alcohol dehydrogenase activity of brain was significantly lowered in PF of PR groups, whereas aldehyde dehydrogenase activity was significantly higher in PR groups than those of control and PF groups. Cytochrome P-450 content, aminopyrine D-methylase and aniline hydroxylase activities were decreased in both PF and PR groups compared to control group. Aldehyde oxidase and xanthine oxidase activities tended to decrease by Puerariae plant extract supplemented goups and degree of decrease predominated in PRI. Superoxide dismutase and glutathione S-transferase activities were increased in PF or PR groups, whereas glutathione peroxidase and catalase activities were significantly decrased by Puerariae plant extracts supplement. These results indicated that supplementation of PF or PR lowers free radical generating enzymes activities. It was suggested that the activities of ethanol metabolizing emzymes and antioxidant enzymes in brain can be enhanced by PF or PR supplement in ethanol-treated rats.

  • PDF

Drug Delivery into the Blood-Brain Barrier by Endogenous Substances-A Role of Amine and Monocarboxylic Acid Carrier Systems for the Drug Transport- (내인성물질의 수송계를 이용한 혈액-뇌관문에의 약물송달V-약물의 혈액-뇌관문 투과성에 대한 염기성 아민 및 모노카르본산 수송계의 역할-)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.4
    • /
    • pp.223-228
    • /
    • 1990
  • The contribution of endogenous transport systems to the blood-brain barrier (BBB) transport of basic and acidic drugs was studied by using a carotid injection technique in rats and an isolated bovine cerebrovascular disease state were compared between the normotensive rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) which have been well established as an animal model with pathogenic similarities to humans. Basic drugs such as eperisone, thiamine and scopolamine inhibited, in a concentration dependent manner the in vivo uptake of $[{^3}H]choline$ through BBB, whereas amino acids and acidic drugs such as salicylic acid and valproic acid did not inhibit the uptake. The uptake of $[^3H]choline$ by B-CAP increased with time and showed a remarkable temperature dependency. The uptake of $[^3H]choline$ by B-CAP showed the very similar inhibitory effects as observed in the in vivo brain uptake, and was competitively inhibited by a basic drug, eperisone. The in vivo BBB uptakes of $[^3H]acetic$ acid and $[^{14}C]salicylic$ acid were dependent on pH of the injectate and the concentration of drugs. Several acidic drugs such such as salicylic acid, benzoic acid and valproic acid inhibited the in vivo uptake of $[^3H]acetic$ acid, whereas amino acid, choline and a basic drug such as eperisone did not inhibit the uptake. The uptake of acetic acid by B-CAP was competitively inhibited by salicylic acid. The permeability surface area product (PS) through BBB for $[^3H]choline$ in SHRSP was significantly lower than that in WKY. The concentration of choline in the brain dialysate in SHRSP was about half of that in WKY, while no significant difference was observed in the plasma concentration of choline between SHRSP and WKY. No significant difference was observed in the transport of monocarboxylic acids, glucose and neutral amino acid through BBB between SHRSP and WKY. From these results, it was concluded that BBB transport system of choline contributes to the transport of basic drugs through BBB, that acidic drugs can be transported via a moncarboxylic acid BBB transport system and that the specific dysfuntion of the BBB choline transport in SHRSP was ascribed to the reduction of the maximum velocity of choline concentration in the brain interstitial fluids.

  • PDF