Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.016

Physiological Function of Insulin-like Peptides in Insects  

Kim, Doo Kyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Lee, Jaemin (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 85-90 More about this Journal
Abstract
Insulin and insulin-like growth factor-1 (IGF-1) are hormones that play an important role in the physiological regulation of metabolism, growth, and longevity in vertebrates. Likewise, insulin-like peptides (ILPs), which are structurally similar to insulin and IGF-1, are crucial in insect physiology. In this review, we present an integrated summary of insect ILPs and their receptor signaling, which has been shown to be comparable to insulin and IGF-1 receptor signaling in vertebrates based on genetic studies of Drosophila melanogaster. Additionally, we review the control of ILP synthesis and secretion in the brain in response to nutrition, as well as the ILPs' physiological role in insect metabolism. Moreover, we discuss the contribution of ILPs to growth, development, reproduction, and diapause. Finally, we consider the possibility of targeting ILP receptor signaling in pest management.
Keywords
Insulin-like peptide; Insect metabolism; Insect hormone; Insulin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gronke, S., Clarke, D.F., Broughton, S., Andrews, T.D., Partridge, L., 2010. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857.   DOI
2 Haeusler, R.A., McGraw, T.E., Accili, D., 2018. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31-44.   DOI
3 Ikeya, T., Galic, M., Belawat, P., Nairz, K., Hafen, E., 2002. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293-1300.   DOI
4 Kenyon, C., 2005. The plasticity of aging: insights from long-lived mutants. Cell 120, 449-460.   DOI
5 Layalle, S., Arquier, N., Leopold, P., 2008. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568-577.   DOI
6 Rostene, W., De Meyts, P., 2021. Insulin: A 100-Year-Old Discovery With a Fascinating History. Endocr. Rev. 42, 503-527.   DOI
7 Sim, C., Denlinger, D.L., 2008. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl. Acad. Sci. U.S.A. 105, 6777-6781.   DOI
8 Masumura, M., Satake, S., Saegusa, H., Mizoguchi, A., 2000. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen. Comp. Endocrinol. 118, 393-399.   DOI
9 Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Ishizaki, H., Mizoguchi, A., Fujiwara, Y., Suzuki, A., 1984. Amino-terminal amino Acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science 226, 1344-1345.   DOI
10 Normann, T.C., 1975. Neurosecretory cells in insect brain and production of hypoglycaemic hormone. Nature 254, 259-261.   DOI
11 Sims, E.K., Carr, A.L.J., Oram, R.A., DiMeglio, L.A., Evans-Molina, C., 2021. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat. Med. 27, 1154-1164.   DOI
12 Smit, A.B., van Kesteren, R.E., Li, K.W., Van Minnen, J., Spijker, S., Van Heerikhuizen, H., Geraerts, W.P., 1998. Towards understanding the role of insulin in the brain: lessons from insulin-related signaling systems in the invertebrate brain. Prog. Neurobiol. 54, 35-54.   DOI
13 Verdu, J., Buratovich, M.A., Wilder, E.L., Birnbaum, M.J., 1999. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat. Cell Biol. 1, 500-506.   DOI
14 Oh, Y., Lai, J.S., Mills, H.J., Erdjument-Bromage, H., Giammarinaro, B., Saadipour, K., Wang, J.G., Abu, F., Neubert, T.A., Suh, G.S.B., 2019. A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 574, 559-564.   DOI
15 Rulifson, E.J., Kim, S.K., Nusse, R., 2002. Ablation of insulinproducing neurons in flies: growth and diabetic phenotypes. Science 296, 1118-1120.   DOI
16 Bier, E., 2022. Gene drives gaining speed. Nat. Rev. Genet. 23, 5-22.   DOI
17 Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., Partridge, L., 2001. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106.   DOI
18 Mizoguchi, A., Ishizaki, H., Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Fujino, M., Kitada, C., 1987. A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol. Cell. Endocrinol. 51, 227-235.   DOI
19 Taning, C.N.T., Van Eynde, B., Yu, N., Ma, S., Smagghe, G., 2017. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 98, 245-257.   DOI
20 Bollenbacher, W.E., Gray, R.S., Whisenton, L.R., Muehleisen, D.P., Nogueira, B.V., 1997. Life cycle expression of a bombyxin-like neuropeptide in the tobacco hornworm, Manduca sexta. J. Insect Physiol. 43, 47-53.   DOI
21 Shelton, A.M., Long, S.J., Walker, A.S., Bolton, M., Collins, H.L., Revuelta, L., Johnson, L.M., Morrison, N.I., 2020. First field release of a genetically engineered, self-limiting agricultural pest insect: evaluating its potential for future crop protection. Front. Bioeng. Biotechnol. 7, 482.   DOI
22 Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., Partridge, L., 2005. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U.S.A. 102, 3105-3110.   DOI
23 DiAngelo, J.R., Birnbaum, M.J., 2009. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol. Cell. Biol. 29, 6341-6352.   DOI
24 Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., Garofalo, R.S., 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110.   DOI
25 Hwangbo, D.S., Gershman, B., Tu, M.P., Palmer, M., Tatar, M., 2004. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562-566.   DOI
26 Koyama, T., Rodrigues, M.A., Athanasiadis, A., Shingleton, A.W., Mirth, C.K., 2014. Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis. Elife 3, e03091.   DOI
27 Geminard, C., Rulifson, E.J., Leopold, P., 2009. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 10, 199-207.   DOI
28 Satake, S., Masumura, M., Ishizaki, H., Nagata, K., Kataoka, H., Suzuki, A., Mizoguchi, A., 1997. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 118, 349-357.   DOI
29 Satake, S., Nagata, K., Kataoka, H., Mizoguchi, A., 1999. Bombyxin secretion in the adult silkmoth Bombyx mori: sex-specificity and its correlation with metabolism. J. Insect Physiol. 45, 939-945.   DOI
30 Scherer, T., Sakamoto, K., Buettner, C., 2021. Brain insulin signalling in metabolic homeostasis and disease. Nat. Rev. Endocrinol. 17, 468-483.   DOI
31 Cohen, P., 2006. The twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol. 7, 867-873.   DOI
32 Walkiewicz, M.A., Stern, M., 2009. Increased insulin/insulin growth factor signaling advances the onset of metamorphosis in Drosophila. PLoS ONE 4, e5072.   DOI
33 Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Mizoguchi, A., Fujiwara, Y., Suzuki, A., Takahashi, S.Y., Ishizaki, H., 1986. Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 83, 5840-5843.   DOI
34 Weinkove, D., Neufeld, T.P., Twardzik, T., Waterfield, M.D., Leevers, S.J., 1999. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adaptor. Curr. Biol. 9, 1019-1029.   DOI
35 Williams, K.D., Busto, M., Suster, M.L., So, A.K., Ben-Shahar, Y., Leevers, S.J., Sokolowski, M.B., 2006. Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc. Natl. Acad. Sci. U.S.A. 103, 15911-15915.   DOI
36 Yakar, S., Adamo, M.L., 2012. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol. Metab. Clin. North Am. 41, 231-247.   DOI
37 Anzalone, A.V., Koblan, L.W., Liu, D.R., 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824-844.   DOI
38 Bohni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B.F., Beckingham, K., Hafen, E., 1999. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865-875.   DOI
39 Boo, K.S., 2001. Insect Hormones and Their Actions. Korean J. Appl. Entomol. 40, 155-196.
40 Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., Hafen, E., 2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221.   DOI
41 Duve, H., 1978. The presence of a hypoglucemic and hypotrehalocemic hormone in the neurosecretory system of the blowfly Calliphora erythrocephala. Gen. Comp. Endocrinol. 36, 102-110.   DOI
42 Garofalo, R.S., 2002. Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol. Metab. 13, 156-162.   DOI
43 Arpagaus, M., 1987. Vertebrate insulin induces diapause termination in Pieris brassicae pupae. Rouxs Arch. Dev. Biol. 196, 527-530.   DOI
44 Tougeron, K. 2019. Diapause research in insects: historical review and recent work perspectives. Entomol. Exp. Appl. 167, 27-36.   DOI
45 Caldwell, P.E., Walkiewicz, M., Stern, M., 2005. Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15, 1785-1795.   DOI