• 제목/요약/키워드: Brain magnetic resonance imaging (MRI)

검색결과 514건 처리시간 0.03초

T1, T2강조영상, FLAIR영상의 임상 적용 (T1-, T2-weighted, and FLAIR Imaging: Clinical Application)

  • 김재형
    • Investigative Magnetic Resonance Imaging
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2009
  • T1, T2강조영상, FLAIR (fluid attenuated inversion recovery) 영상기법은 뇌 MRI의 가장 기본적인 영상기법들이다. T1강조영상은 짧은 TR과 짧은 TE를 이용한 스핀에코 기법으로서 조직의 T1이완시간의 차이를 신호 차이로 반영하는 기법이다. 짧은 TR을 사용하면 조직 간에 종축 자기화의 회복 정도가 크게 차이나게 되며 이를 신호에 반영하는 것이다. T2강조영상은 긴 TR과 긴 TE를 이용한 스핀에코 기법으로서 조직의 T2이완시간의 차이를 신호 차이로 반영하는 기법이다. 긴 TE을 사용하면 조직 간에 횡축 자기화의 붕괴가 크게 차이나게 되며 이를 신호에 반영하는 것이다. FLAIR는 180도 반전펄스를 먼저 가하는 반전회복 (inversion recovery) 기법의 일종으로서 뇌척수액의 신호를 억제하기 위하여 2500 msec 정도의 반전시간을 적용한다.

  • PDF

기능적 자기공명영상기법을 이용한 대뇌의 집행기능 평가 (The Evaluation of Cerebral Executive Function Using Functional MRI)

  • 은성종;국진선;김정재
    • 한국방사선학회논문지
    • /
    • 제7권5호
    • /
    • pp.305-311
    • /
    • 2013
  • 집행기능은 뇌손상환자의 회복을 촉진시키는데 중요한 역할을 하며, 그 손상 기전에 대한 이해는 중요하다. 본 연구에서는 기능적 자기공명 영상 기법을 이용하여 집행기능 수행에 관여하는 대뇌 활성화 영역을 파악하고자 실시하였다. 10명의 정상성인(남자 4, 여자 6)이 실험에 참여하였으며, 모두 폐쇄공포증이 없고 금속을 삽입한 수술의 경험이 없는 평균 나이 24.5 세였다. 기능적 자기공명영상 실험을 위한 과제는 단어-색체 검사 과제를 30초간의 자극제시 시간에 맞게 수정하여 제시한 후, SPM 99 프로그램을 이용하여 영상 재정렬(realignment), 표준화(nomalization)를 실시한 후 시간 순서대로 격자화하고, 각 영상 픽셀의 신호강도의 유의한 차이가 있는지를 알아보기 위해 휴지기와 활성기로 나누어 독립표본 t-검정(p<.05)을 실시하여 활성화 영상을 생성시켰다. 이를 표준 해부학적 영상에 중첩시켜 유의수준 95%에서 뇌 활성화 영상을 얻었다. 기능적 자기공명 영상결과 집행기능과 관련 있는 내측 전전두엽, 전 대상회, 두정엽, 시각 전두영역, 측두엽 등에서 활성화 우위를 보였다. 집행기능을 수행하는 뇌 활성화 영역을 확인하면 뇌가소성을 증진시키는 효과적인 인지 치료방법을 개발하는데 매우 유용하게 사용될 것이다.

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

Evaluation of the lateral ventricle using MRI in normal micropigs

  • Choi, Mihyun;Lee, Namsoon;Yi, Kangjae;Kim, Junyoung;Choi, Mincheol
    • 대한수의학회지
    • /
    • 제51권3호
    • /
    • pp.227-231
    • /
    • 2011
  • This study was undertaken to assess the lateral ventricle, which was some portion of brain and related to congenital anomalies, from 1, 2, 4, and 8 months of age in healthy micropigs. They were induced general anesthesia and performed magnetic resonance imaging (MRI) with a 0.3 Tesla magnet. Each age group was evaluated by three subjects such as lateral ventricular volume, ventricular volume ratio and asymmetry. T1 weighted transverse images were acquired for calculation of lateral ventricular and corresponding brain parenchyma areas. The ratio of bilateral ventricle areas used to analyze the asymmetry. The mean ventricular volumes of each month were $676.74{\pm}25.58mm^3$ (1 month-old), $630.64{\pm}143.84mm^3$ (2 month-old), $992.12{\pm}106.03mm^3$ (4 month-old) and $1172.62{\pm}237.57mm^3$ (8 month-old), respectively. The ventricular volume ratio was the smallest at 2 month-old and re-increased from that age. The ratio was significantly different between 2 month-old and other age groups (p < 0.05). The value of bilateral area ratio showed within 1.5 in all experimental animals. Consequently the lateral ventricle showed a positive correlation with aging and symmetric shapes in both sides. The developmental pattern of the lateral ventricle provides basic data in micropigs as an experimental animal model for physiological and neurosurgical approach.

Alteration of Functional Connectivity in OCD by Resting State fMRI

  • Kim, Seungho;Lee, Sang Won;Lee, Seung Jae;Chang, Yongmin
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.583-592
    • /
    • 2021
  • Obsessive-compulsive disorder (OCD) is a mental disorder in which a person repeated a particular thought or feels. The domain of beliefs and guilt predicted OCD symptoms. Although there were some neuroimaging studies investigating OCD symptoms, resting-state functional magnetic resonance imaging (rs-fMRI) study investigating intra-network functional connectivity associated with guilt for OCD is not reported yet. Therefore, in the current study, we assessed the differences between intra-network functional connectivity of healthy control group and OCD group using independent component analysis (ICA) method. In addition, we also aimed to investigate the correlation between changed functional connectivity and guilt score in OCD. Total 86 participants, which consisted of 42 healthy control volunteers and 44 OCD patients, acquired rs-fMRI data using the 3T MRI. After preprocessing the fMRI data, a functional connectivity was used for group independent component analysis. The results showed that OCD patients had higher score in emotion state in beliefs and lower functional connectivity in fronto-parietal network (FPN) than control group. A decrease of functional connectivity in FPN was negatively correlated with feelings of guilt in OCD. Our results suggest excessive increase in guilt negatively affect to process emotional state and behavior or cognitive processing by influencing intrinsic brain activity.

오랜 운전경험을 가진 택시운전기사들의 해마의 구조와 기능적 변화에 대한 MRI연구 (Structural and Functional Changes of Hippocampus in Long Life Experienced Taxi Driver)

  • 유명원;이동균;이종민;김선미;류창우;김의종;장건호
    • Investigative Magnetic Resonance Imaging
    • /
    • 제16권2호
    • /
    • pp.124-135
    • /
    • 2012
  • 목적: 본 연구에서는 숙달된 택시운전기사들을 대상으로 내비게이션 시스템을 이용하여 운전하는 한국인 대조군에 비교하여 해마의 부피와 모양 그리고 기능적 변화를 알아보고자 하였다. 대상과 방법: 총 8명의 대상군(4명의 숙달된 택시운전기사들과 4명의 같은 나이대 일반인 대조군)에 대해 삼차원 T1강조영상과 혈류산소 수준에 따른 기능성 자기공명영상을 촬영하였다. 해마의 용적과 모양, 기능성 자기공명영상 자료를 분석하여 두 군간에 신경 활성도 차이를 비교하였다. 결과: 해마의 용적은 두 군간에 통계적으로 유의한 차이를 보이지 않았다(p > 0.05). 해마의 모양을 보면, 택시운전기사군의 왼쪽 해마가 대조군에 비해 전체 길이가 약간 길고 머리와 꼬리부분이 약간 더 컸다(p < 0.05, uncorrected). 기능성 자기공명영상에서는 택시운전기사군에서 대조군에 비해 방추상회가 특히 활성화되어 있었다. 결론: 택시운전기사군의 해마가 보이는 이러한 구조적, 기능적 변화는 그들의 직업과 관련하여 공간적 탐색능력을 지속적으로 사용하면서 해마와 관련 뇌영역이 기능적으로 분화했음을 나타내는 소견으로 추측할 수 있겠다.

Gradient Optimized Gradient-Echo Gradient Moment Nulling Sequences for Flow Compensation of Brain Images

  • Jahng, Geon-Ho;Stephen Pickup
    • Investigative Magnetic Resonance Imaging
    • /
    • 제4권1호
    • /
    • pp.20-26
    • /
    • 2000
  • Gradient moment nulling techniques require the introduction of an additional gradient on each axis for each order of motion correction to be applied. The additional gradients introduce new constraints on the sequence design and increase the demands on the gradient system. The purpose of this paper is to demonstrate techniques for optimization of gradient echo gradient moment nulling sequences within the constraints of the gradient hardware. Flow compensated pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. The design of the gradient moment nulling sequences requires the solution of a linear system of equations. A Mathematica package was developed that interactively solves the gradient moment nulling problem. The package allows the physicist to specify the desired order of motion compensation and the duration of the gradients in the sequence with different gradient envelopes. The gradient echo sequences with first, second, and third order motion compensation were implemented with minimum echo time. The sequences were optimized to take full advantage of the capabilities of the gradient hardware. The sequences were used to generate images of phantoms and human brains. The optimized sequences were found to have better motion compensation than comparable standard sequences.

  • PDF

정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구 (Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies)

  • 권용현;권중원;박상영;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

메트로니다졸에 의해 유발된 가역적 뇌증 2례 (Reversible Metronidazole-induced Encephalopathy)

  • 지기환;이정;윤창호;하충건
    • 대한임상독성학회지
    • /
    • 제4권2호
    • /
    • pp.131-136
    • /
    • 2006
  • Metronidazole is an antimicrobial drug widely used against various types of infectious agents, including protozoa, amoeba, Helicobacter pylori, and anaerobes. Metronidazole may produce some adverse effects on hematologic, immunologic, neurologic and other systems. We report a case of reversible metronidazole-induced encephalopathy. The toxic dose of metronidazole and the onset of encephalopathy were variable. Two patients showed abnormally high signal intensity in the bilateral dentate nucleus of cerebellum, and characteristic abnormalities were detected by brain magnetic resonance imaging (MRI) and T2-weighted images, fluid-attenuated inversion recovery images and/or diffusion weighted imaging (DWI). Discontinuation of metronidazole resulted in the improvement of the neurologic symptoms over a period of two to three weeks. We followed up the brain MRI with DWI in one case following obvious clinical improvement, and the previously detected lesion had disappeared.

  • PDF

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.