• Title/Summary/Keyword: Brain magnetic resonance imaging (MRI)

Search Result 503, Processing Time 0.028 seconds

Endoscopic Treatment of Chronic Subdural Hematoma Combined with Inner Subdural Hygroma

  • Yoon Hwan Park;Kwang-Ryeol Kim;Ki Hong Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.552-561
    • /
    • 2023
  • Objective : A chronic subdural hematoma (CSDH) is a collection of bloody fluid located in the subdural space and encapsulated by neo-membranes. An inner subdural hygroma (ISH) is observed between the inner membrane of a CSDH and the brain surface. We present six cases of CSDH combined with ISH treated via endoscopy. Methods : Between 2011 and 2022, among the 107 patients diagnosed with CSDH in our institute, six patients were identified as presenting with CSDH combined with ISH and were included in this study. Preoperative computerized tomography (CT) and magnetic resonance imaging (MRI) were performed simultaneously, and endoscopic surgery for aspiration of the hematoma was performed in all cases of CSDH combined with ISH. Results : The mean age of patients was 71 years (range, 66 to 79). The patients were all male. In two cases, the ISH was not identified on CT, but was clearly seen on MRI in all patients. The inner membrane of the CSDH was tense and bulging after draining of the CSDH in endoscopic view due to the high pressure of the ISH. After fenestration of the inner membrane of the CSDH and aspiration of the ISH, the membrane was sunken down due to the decreasing pressure of the ISH. There was one recurrence in post-operative 2-month follow up. The symptoms improved in all patients after surgery, and there were no surgery-related complications. Conclusion : CSDH combined with ISH can be diagnosed on imaging, and endoscopic surgery facilitates safe and effective treatment.

Software Implementation for 3D visualization of brain fiber tractography and high-resolution anatomical data

  • Oh, Jung-Su;Song, In-Chan;Ikhwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.32-32
    • /
    • 2003
  • The purpose of paper is to implement a PC-based software for 3D visualization of brain fiber tractography and high-resolution anatomical data 서론: DTI (Diffusion tensor imaging) is a very useful noninvasive MRI technique for providing the direction and connectivity information of brain fiber tracts. Especially in patients with glioma, fiber tracts on the lesion side in the brain had varying degrees of displacement or disruption as a result of the tumor. Tract disruption resulted from direct tumor involvement, compression on the tract, and vasogenic edema surrounding the tumor. To combine information on fiber tracts surrounding turner with a high-resolution anatomical 3D image may be clinically useful for surgical planning. Therefore we implemented a software for visualizing both brain fiber tractography and anatomical data.

  • PDF

Software Implementation for 3D visualization of brain fiber tractography and high-resolution anatomical data

  • Oh, Jung-Su;Song, In-Chan;Ikhwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.83-83
    • /
    • 2003
  • Purpose: The purpose of paper is to implement a PC-based software for 3D visualization of brain fiber tractography and high-resolution anatomical data introduction: DTI (Diffusion tensor imaging) is a very useful noninvasive MRI technique for providing the direction and connectivity information of brain fiber tracts. Especially in patients with glioma, fiber tracts on the lesion side in the brain had varying degrees of displacement or disruption as a result of the tumor. Tract disruption resulted from direct tumor involvement, compression on the tract, and vasogenic edema surrounding the tumor. To combine information on fiber tracts surrounding tumor with a high-resolution anatomical 3D image may be clinically useful for surgical planning. Therefore we implemented a software for visualizing both brain fiber tractography and anatomical data.

  • PDF

Software Development for the Integrated Visualization of Brain Tumor and its Surrounding Fiber Tracts (뇌종양 및 그 주변 신경다발의 통합적 가시화를 위한 소프트웨어의 개발)

  • Oh Jungsu;Cho Ik Hwan;Na Dong Gyu;Chang Kee Hyun;Park Kwang Suk;Song In Chan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.2-8
    • /
    • 2005
  • Purpose : The purpose of this study was to implement a software to visualize tumor and its surrounding fiber tracts simultaneously using diffusion tensor imaging and examine the feasibility of our software for investigating the influence of tumor on its surrounding fiber connectivity. Material and Methods : MR examination including T1-weigted and diffusion tensor images of a patient with brain tumor was performed on a 3.0 T MRI unit. We used the skull-striped brain and segmented tumor images for volume/surface rendering and anatomical information from contrast-enhanced T1-weighted images. Diffusion tensor images for the white matter fiber-tractography were acquired using a SE-EPI with a diffusion scheme of 25 directions. Fiber-tractography was performed using the streamline and tensorline methods. To correct a spatial mismatch between T1-weighted and diffusion tensor images, they were coregistered using a SPM. Our software was implemented under window-based PC system. Results : We successfully implemented the integrated visualization of the fiber tracts with tube-like surfaces, cortical surface and the tumor with volume/surface renderings in a patient with brain tumor. Conclusion : Our result showed the feasibility of the integrated visualization of brain tumor and its surrounding fiber tracts. In addition, our implementation for integrated visualization can be utilized to navigate the brain for the quantitative analysis of fractional anisotropy to assess changes in the white matter tract integrity of edematic and peri-edematic regions in a number of tumor patients.

  • PDF

fMRI Investigation on Cue-induced Smoking Craving:A Case Report (흡연갈망의 신경해부학적 특이성:기능자기공명영상연구)

  • Lim, Hyun-Kook;Pae, Chi-Un;Lee, Chang-Uk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Object:Nicotine dependence is the most common substance abuse disorder. One of the characteristics of nicotine dependence is craving. Regional activation of the brain induced by craving for nicotine was evaluated by using functional magnetic resonance imaging to investigate neuroanatomical site of smoking craving. Method:A smoker who satisfied DSM-IV criteria for nicotine dependence and a non smoker was studied. MRI data were acquired on a 1.5T Magnetom Vision Plus with a head volume coil. Two sets of visual stimuli were presented to subjects in a random manner. One was the film scenes of inducing smoking craving and the other was neutral stimuli not related to smoking. There were two fMRI sessions before and after smoking or sham smoking. Data were analyzed using SPM99. Results:fMRI showed significant activated area in anterior cingulate and medial frontal lobes in the smoker during smoking craving. Right dorsolateral prefrontal cortex and parietal lobes were activated in the control during visual stimulation before smoking. After smoking, there was no brain activation during visual stimulation in both of smoker and non smoker. Conclusion:Metabolic activity of the anterior cingulate and medial frontal lobes increased during craving for smoking. This result suggests that fMRI may be a valuable tool in the identification of neurobiological process of craving.

  • PDF

Observations of Oxygen Administration Effects on Visuospatial Cognitive Performance using Time Course Data Analysis of fMRI (뇌기능 자기공명영상의 시계열 신호 분석에 의한 공간인지과제 수행시 산소 공급의 효과 관찰)

  • Sohn Jin-Hun;You Ji-Hye;Eom Jin-Sup;Lee Soo-Yeol;Chung Soon-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Purpose : This study attempted to investigate the effects of supply of highly concentrated $(30\%)$ oxygen on human ability of visuospatial cognition using time course data analysis of functional Magnetic Resonance Imaging (fMRI). Materials and Methods : To select an item set in the visuospatial performance test, two questionnaires with similar difficulty were developed through group testing. A group test was administered to 263 college students. Two types of questionnaire containing 20 questions were developed to measure the ability of visuospatial cognition. Eight college students (right-handed male, average age of 23.5 yrs) were examined for fMRI study. The experiment consisted of two runs of the visuospatial cognition testing, one with $21\%$ level of oxygen and the other with $30\%$ oxygen level. Each run consisted of 4 blocks, each containing control and visuospatial items. Functional brain images were taken from 37 MRI using the single-shot EPI method. Using the subtraction procedure, activated areas in the brain during visuospatial tasks were color-coded by t-score. To investigate the time course data in each activated area from brain images, 4 typical regions (cerebellum, occipital lobe, parietal lobe, and frontal lobe) were selected. Results : The average accuracy was $50.63{\pm}8.63$ and $62.50{\pm}9.64$ for $21\%\;and\;30\%$ oxygen respectively, and a statistically significant difference was found in the accuracy between the two types of oxygen (p<0.05). There were more activation areas observed at the cerebellum, occipital lobe, parietal lobe and frontal lobe with $30\%$ oxygen administration. The rate of increase in the cerebellum, occipital lobe and parietal lobe was $17\%$ and that of the frontal lobe, $50\%$. Especially, there were increase of intensity of BOLD signal at the parietal lobe with $30\%$ oxygen administration. The increase rate of the left parietal lobe was $1.4\%$ and that of the right parietal lobe, $1.7\%$. Conclusion : It is concluded that while performing visuospatial tasks, high concentrations of oxygen administration make oxygen administration sufficient, thus making neural network activate more, and the ability to perform visuospatial tasks increase.

  • PDF

fMRI of Visual and Motor Stimuli : Difference of Total Activation Depends on Stimulation Paradigm (시각과 운동의 뇌기능영상 : 자극에 따른 총활성화의 차이)

  • 정순철;송인찬;장기현;유병기;문치웅;조장희
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 1999
  • Purpose : To investigate the difference of total activation in visual area, motor area, and cerebellum according to the stimulation paradigm. Materials and Methods : Functional MR imaging was performed in 5 healthy volunteers with visual and motor activity using EPI technique. LED and Checker-Board stimulation were performed for visual activity. Thumb motion and Finger Tapping were performed for motor and cerebellum activity. Stimulus timing was 60sec. off, 120sec. on, 60sec. off. Data processing was carried out by using the cross-correlation method for each pixel. Each pixel was then selected and assumed activated if the correlation coefficient was equal or larger than a threshold value. Time course data was obtained by calculating the total activation which was defined as the number of activated pixel x averaged pixel intensity. Results : In the case of visual activity with LED stimulation, we found increased total activity of more than 100% compared with Checker-Board stimulation. In the case of motor area and cerebellum with Finger tapping stimulation, we found increased total activity of more than 10% and 150%, respectively compared with Thumb motion stimulation.

  • PDF

Comparative Study on Usefulness of SPAIR and STIR Fast SE T2-weighted 3T Magnetic Resonance Imaging (3T 고속스핀에코 T2강조영상에서 지방소거 반전회복기법의 유용성 연구 - SPAIR와 STIR와의 비교 -)

  • Lee, Hoo-Min;Yoon, Joon;Yeo, Young-Bok
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.45-50
    • /
    • 2010
  • In this study, we compared the clinical usefulness of SPAIR (Spectral Adiabatic Inversion Recovery) and STIR (Short TI Inversion Recovery) to evaluate the fat tissues precisely. The images of brain axial (n = 20), lumber spine sagittal (n = 20), hip joint coronal (n = 17) and knee joint (n = 25) were obtained by turbo spin echo T2 weighted method on 3T magnetic resonance image. The signal intensity (SI) values were measured using region of interest in fat, muscle tissue, and background noise. The inhomogeneity values were measured using the standard deviation (SD) value divided by the mean values. SD signifies the amount of error which is similar to the imaging heterogeneity. In brain axial images, the SPAIR showed more superior SI and inhomogeneity results than the STIR. In spine, hip and knee images, STIR showed more excellent SI results, but poor inhomogeneity than the SPAIR.

Brain MRI-Based Artificial Intelligence Software in Patients with Neurodegenerative Diseases: Current Status (퇴행성 뇌질환에서 뇌 자기공명영상 기반 인공지능 소프트웨어 활용의 현재)

  • So Yeong Jeong;Chong Hyun Suh;Ho Young Park;Hwon Heo;Woo Hyun Shim;Sang Joon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.473-485
    • /
    • 2022
  • The incidence of neurodegenerative diseases in the older population has increased in recent years. A considerable number of studies have been performed to characterize these diseases. Imaging analysis is an important biomarker for the diagnosis of neurodegenerative disease. Objective and reliable assessment and precise detection are important for the early diagnosis of neurodegenerative diseases. Artificial intelligence (AI) using brain MRI applied to the study of neurodegenerative diseases could promote early diagnosis and optimal decisions for treatment plans. MRI-based AI software have been developed and studied worldwide. Representatively, there are MRI-based volumetry and segmentation software. In this review, we present the development process of brain volumetry analysis software in neurodegenerative diseases, currently used and developed AI software for neurodegenerative disease in the Republic of Korea, probable uses of AI in the future, and AI software limitations.

Analysis of Empty Sella Secondary to the Brain Tumors

  • Kim, Ji-Hun;Ko, Jung-Ho;Kim, Hyun-Woo;Ha, Ho-Gyun;Jung, Chul-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.355-359
    • /
    • 2009
  • Objective : The definition of empty sella syndrome is 'an anatomical entity in which the pituitary fossa is partially or completely filled with cerebrospinal fluid, while the pituitary gland is compressed against the posterior rim of the fossa'. Reports of this entities relating to the brain tumors not situated in the pituitary fossa, have rarely been reported. Methods : In order to analyze the incidence and relationship of empty sella in patients having brain tumors, the authors reviewed preoperative magnetic resonance imaging (MRI) of 72 patients with brain tumor regardless of pathology except the pituitary tumors. The patients were operated in single institute by one surgeon. There were 25 males and 47 females and mean patient age was 53 years old (range from 5 years to 84 years). Tumor volume was ranged from 2 cc to 238 cc. Results : The overall incidence of empty sella was positive in 57/72 cases (79.2%). Sorted by the pathology, empty sella was highest in meningioma (88.9%, p=0.042). The empty sella was correlated with patient's increasing age (p=0.003) and increasing tumor volume (p=0.016). Conclusion : Careful review of brain MRI with periodic follow up is necessary for the detection of secondary empty sella in patients with brain tumors. In patients with confirmed empty sella, follow up is mandatory for the management of hypopituitarism, cerebrospinal fluid (CSF) rhinorrhea, visual disturbance and increased intracranial pressure.