• 제목/요약/키워드: Brain ischemia

검색결과 403건 처리시간 0.027초

기허담성치방이 뇌병환에 미치는 기전연구 (The Mechanism Study of Prescription for Treatment Abundant Expectoration due to Deficiency of Qi on Brain Disease in Rats)

  • 이남구;성신
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1083-1088
    • /
    • 2004
  • This Study was designed to investigate the mechanism of Prescription for Treatment Abundant Expectoration due to Deficiency of Qi(Yukgunja-Tang, YGT) on cerebral hemodynamics [regional cerebral blood f1ow(rCBF) and pial arterial diameter(PAD)] in cerebral ischemia rats. The results were as follows: Both rCBF and PAD were significantly and stably decreased by YGT (10㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in Control group. Pretreatment with indomethacin(1㎎/㎏, i.p.), an inhibitor of cyclooxygenase and methylene blue(10㎍/㎏, i.p.), an inhibitor of guanylate cyclase significantly but unstably increased the YGT-induced increases in rCBF during the period of cerebral reperfusion. Pretreatment with indomethacin significantly and stably decreased the YGT-induced increases in PAD during the period of cerebral reperfusion, but pretreatment with methylene blue increased unstably the YGT-induced increases in PAD during the period of cerebral reperfusion. In conclusion, the present authors thought that mechanism of YGT on cerebral hemodynamics was connected with guanylate cyclase in cerebral ischemia rats.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Caffeic acid phenethyl ester protects against photothrombotic cortical ischemic injury in mice

  • Hwang, Sun Ae;Kim, Chi Dae;Lee, Won Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권1호
    • /
    • pp.101-110
    • /
    • 2018
  • In this study, we aimed to investigate the neuroprotective effects of caffeic acid phenethyl ester (CAPE), an active component of propolis purified from honeybee hives, on photothrombotic cortical ischemic injury in mice. Permanent focal ischemia was achieved in the medial frontal and somatosensory cortices of anesthetized male C57BL/6 mice by irradiation of the skull with cold light laser in combination with systemic administration of rose bengal. The animals were treated with CAPE (0.5-5 mg/kg, i.p.) twice 1 and 6 h after ischemic insult. CAPE significantly reduced the infarct size as well as the expression of tumor necrosis $factor-{\alpha}$, hypoxiainducible $factor-1{\alpha}$ monocyte chemoattractant protein-1, $interleukin-1{\alpha}$, and indoleamine 2,3-dioxygenase in the cerebral cortex ipsilateral to the photothrombosis. Moreover, it induced an increase in heme oxygenase-1 immunoreactivity and interleukin-10 expression. These results suggest that CAPE exerts a remarkable neuroprotective effect on ischemic brain injury via its anti-inflammatory properties, thereby providing a benefit to the therapy of cerebral infarction.

계혈등(鷄血藤)이 뇌혈류량 및 Lactate Dehydrogenase 활성에 미치는 실험적 효과 (Experimental Effects of SPATHOLOBI CAULIS on the Cerebral Blood Flow and Lactate Dehydrogenase Activity)

  • 이상록;정현우
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.25-30
    • /
    • 2006
  • This Study was designed to investigate the effects of Patholobi Caulis on the change of regional cerebral blood flow (rCBF) and blood Pressure (MABP) in normal and Cerebral ischemic rats. And, this Study was designed to investigate the inhibition of lactate dehydrogenase (LDH) activity in neuronal cells. The results were as follows : In normal rats, Patholobi Caulis significantly increased rCBF in a dose-dependent manner, and MABP was somewhat increased. In ischemia rats, rCBF was significantly and stably increased by Patholobi Caulis (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. Patholobi Caulis significantly inhibited LDH activity in neuronal cells. It was suggested that Patholobi Caulis had an anti-ischemic effect through the improvement of cerebral hemodynamics and inhibitive effect on the brain damage.

Effects of Dietary Soy Protein and Soy Isoflavones on Cerebral Infarction Size and Antioxidant Enzyme Activities in a Rat Focal Ischemia Model

  • Park, Kyung-Ae;Lee, Hee-Joo;Park, Myung-Sook;Lee, Joung-Hee;Jeon, Sang-Eun;Yoon, Byung-Woo;Choi-Kwon, Smi
    • Nutritional Sciences
    • /
    • 제9권4호
    • /
    • pp.240-247
    • /
    • 2006
  • In this study we investigated the neuroprotective, antioxidative, and hypocholestrolemic effects of dietary soy protein and soy isoflavone in a rat focal brain ischemia model. Weaning Sprague-Dawley rats were fed a 20% casein-based diet (CA), 20% soy protein-based diet (SP), or 0.2% soy isoflavones-supplemented diet (ISO) for 6 weeks. The cortical infarction volume of the ISO group was significantly lower than that of the SP group. The thiobarbituric acid reactive substances (TBARS) were considerably lower in the ISO group than the CA group. Glutatbione peroxidase activities of the SP group were notably higher than those of the CA group. Acetylcholinesterase (AchE) activities of the SP group were significantly decreased compared to the CA group. LDL cholesterol levels and LDL/HDL ratios of the ISO group were lower than those of the CA and SP groups. Our results collectively suggest that soy isoflavones may contribute to neuroprotection by reducing the TBARS and serum LDL/HDL ratio, whereas soy protein may be associated with the regulation of cognitive functions by modulating AchE activity.

The effect of physical training on glutamate transporter expression in an experimental ischemic stroke rat model

  • Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권2호
    • /
    • pp.87-91
    • /
    • 2013
  • Objective: The present study was aimed at determining the effect of physical training on glutamate transporter activity in a middle cerebral artery occlusion (MCAO)-induced ischemia injury rat model. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into three groups. Group I included non-occlusion sham controls (n=10), Group II included non-physical training after MCAO (n=10), and Group III included rats that were subjected to physical training after MCAO (n=10). Rats in the physical training group underwent treadmill training, which began at 24 h after MCAO and continued for 14 consecutive days. The training intensity was gradually increased from 5 m/min on the first day to 12 m/min on day 3, and it was maintained until day 14. Focal cerebral ischemia was examined in adult male Sprague-Dawley rats by using the MCAO model. We determined the functional outcomes for each rat on days 1, 7, and 14. Glutamate transporter-1 (GLT-1) activity in the cortex of rats from all three groups was examined at the end of the experiment. Results: Out result show that MCAO rats exhibited severe neurological deficits on the 1 day, and there was no statistically significant in each groups. We observed that the functional outcomes were improved at days 7 and 14 after middle cerebral artery occlusion, and GLT-1 activity was increased in the physical training group (p<0.05). Conclusions: These results indicated that physical training after focal cerebral ischemia exerts neuroprotective effects against ischemic brain injury by improving motor performance and increasing the levels of GLT-1 activity.

Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation

  • Choi, Tae-Min;Yun, Misun;Lee, Jung-Kil;Park, Jong-Tae;Park, Man-Seok;Kim, Hyung-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권6호
    • /
    • pp.544-550
    • /
    • 2016
  • Objective : Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods : In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results : Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion : These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.

흰쥐 해마 절편에서 저산소증에 의한 [$^3H$-5-Hydroxytrytamine의 유리 변동에 미치는 superoxide dismutase/catalase의 영향 (Effect of Superoxide Dismutase on the Release of [$^3H$]-5-Hydroxytrytamine after Hypoxia from Rat Hippocampal Slices)

  • 이경은;박월미;배영숙
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.359-365
    • /
    • 1997
  • Many factors are known to be responsible for cerebral ischemic injury, such as excitatory neurotransmitters, increased intraneuronal calcium, or disturbance of cellular energy metabolism. Recently, oxygen free radicals, formed during ischemia/reperfusion, have been proposed as one of the main causes of ischemia/reperfusion injury. Therefore, to investigate the role of oxygen free radical during ischemia/reperfusion, in the present study the effect of endogenous oxygen free radical scavenger, superoxide dismutase / catalase(SOD / catalase) on the release of [$^3$H]-5-hydroxytryptamine([$^3$H]-5-HT) during hypoxia/reoxygenation in rat hippocampal slices was measured. The hippocampus was obtained from the rat brain and sliced 400 gm thickness with manual chopper. After 30 min's preincubation in the normal buffer, the slices were incubated for 20 min in a buffer containing [$^3$H]-5-HT(0.1 $\mu$M, 74 $\mu$Ci) for uptake, and washed. To measure the release of [$^3$H]-5-HT into the buffer, the incubation medium was drained off and refilled every ten minutes through a sequence of 14 tubes. Induction of hypoxia for 20 min (gassing it with 95% N$_2$/5% CO$_2$) was done in the 6th and 7th tube, and oxygen free radical scavenger, SOD / catalase was added 10 minutes prior to induction of hypoxia. The radioactivity in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total activity. When slices were exposed to hypoxia for 20 min, [$^3$H]-5-HT release was markedly decreased and a rebound release of [$^3$H]-5-HT was observed on the post-hypoxic reoxygenation period. SOD / catalase did not changed the release of [$^3$H]-5-HT in control group, but inhibited the decrease of [$^3$H]-5-HT release in hypoxic period and rebound increase of [$^3$H]-5-HT in reoxygenation period. This result suggest that superoxide anion may play a role in the hypoxic-, and reoxygenation-induced change of [$^3$H]-5-HT release in rat hippocampal slices.

  • PDF

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

Bioinformatics Analysis of Autophagy and Mitophagy Markers Associated with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Youn, Dong Hyuk;Kim, Bong Jun;Hong, Eun Pyo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권2호
    • /
    • pp.236-244
    • /
    • 2022
  • Objective : To evaluate the interactions among differentially expressed autophagy and mitophagy markers in subarachnoid hemorrhage (SAH) patients with delayed cerebral ischemia (DCI). Methods : The expression data of autophagy and mitophagy-related makers in the cerebrospinal fluid (CSF) cells was analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting. The markers included death-associated protein kinase (DAPK)-1, BCL2 interacting protein 3 like (BNIP3L), Bcl-1 antagonist X, phosphatase and tensin homolog-induced kinase (PINK), Unc-51 like autophagy activating kinase 1, nuclear dot protein 52, and p62. In silico functional analyses including gene ontology enrichment and the protein-protein interaction network were performed. Results : A total of 56 SAH patients were included and 22 (38.6%) of them experienced DCI. The DCI patients had significantly increased mRNA levels of DAPK1, BNIP3L, and PINK1, and increased expression of BECN1 compared to the non-DCI patients. The most enriched biological process was the positive regulation of autophagy, followed by the response to mitochondrial depolarization. The molecular functions ubiquitin-like protein ligase binding and ubiquitin-protein ligase binding were enriched. In the cluster of cellular components, Lewy bodies and the phagophore assembly site were enriched. BECN1 was the most connected gene among the differentially expressed markers related to autophagy and mitophagy in the development of DCI. Conclusion : Our study may provide novel insight into mitochondrial dysfunction in DCI pathogenesis.