• Title/Summary/Keyword: Brain imaging study

Search Result 631, Processing Time 0.032 seconds

Postcontrast T1-weighted Brain MR Imaging in Children: Comparison of Fat-suppressed Imaging with Conventional or Magnetization Transfer Imaging

  • 이충욱;구현우;최충곤
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.37-37
    • /
    • 2003
  • To assess the merits and demerits of postcontrast fat-suppressed (FS) brain MR imaging in children in the evaluation of various enhancing lesions, compared with postcontrast conventional or Magnetization Transfer (MT) imaging. 대상 및 방법: We reviewed patients with enhancing lesion on brain MR imaging who underwent both FS imaging and one of conventional or MT imaging as a postcontrast T1-weighted brain MR imaging. Inclusion criteria of our study were as follows: MR studies should be peformed within one-year interval and showed no significant interval change of imaging findings. Thirty-four patients (21 male, 13 female; mean age, 8 years) with 43 enhancing lesions (19 intra-axial, 19 extra-axial, and 5 orbital location) were included in this study, Twenty-one pairs of FS and conventional imaging, and 15 pairs of FS and MT imaging were available. Two radiologists visually assessed the lesion conspicuity and the presence of flow or susceptibility artifacts in a total of 36 pairs of MR imaging by consensus. For 21 measurable lesions (19 pairs of FS and conventional imaging, 5 pairs of FS and MR imaging), contrast ratio between the lesion and the normal brain( [SIlesion-SIwater]/[SInormal brain-SIwater]) were calculated and compared.

  • PDF

Postcontrast Brain MR Imaging in Children: Various Pulse Sequences and Imaging Strategies

  • 이충욱;구현우
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • In brain MR imaging, contrast-enhanced study is important in the detection and characterization of lesions. As a postcontrast brain MR imaging, conventional T1 weighted imaging has been usually used. Magnetization transfer imaging has been used to increase conspicuity of enhancing lesions. In addition, fat-suppression imaging can be used as in other parts of the body. Recently, FLAIR sequence has been reported to be useful in detecting subarachnoid, meningeal, and subdural abnormalities. In this exhibit, we demonstrate basic principles and typical appearances of various pulse sequences that can be used as a postcontrast brain MR imaging in children. Furthermore, we discuss imaging strategies to increase clinical usefulness of postcontrast brain MR imaging for specific abnormalities. The advantages and disadvantages of each pulse sequence are also discussed.

  • PDF

Detection of Brain Metastatses Using Limited Brain MR Imaging : Usefulness of Limited Contrast-Enhanced MR Imaging in Brain Metastasis (뇌전이암 진단을 위한 제한적 뇌 자기공명영상의 유용성에 관한 연구)

  • Kwon, Sun Jung;Lee, Yun Sun;An, Jin Yong;Park, Hee Sun;Jung, Sung Soo;Kim, Ju Ock;Kim, Jin Hwan;Song, Chang Joon;Kim, Sun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.499-505
    • /
    • 2003
  • Background : The brain is a common site of a metastasis in lung cancer patients. If left untreated, the patients succumb to progressive neurological deterioration with a lower survival rate than with other metastases sites. Contrast-enhanced MR imaging in the absence of symptoms or clinical signs is not recommended for identifying a cerebral metastasis in lung cancer patients because of management effectiveness. This pilot study was performed to estimate whether or not limited brain MR imaging, which has a lower cost, could be used to replace conventional brain MR imaging. Method : Between April 1999 and March 2001, 43 patients with a primary lung cancer and the others (breast cancer, stomach cancer, colon cancer, malignant melanoma etc), who had neurological symptoms and signs, were examined using conventional brain MR imaging to examine brain metastases. The control group involved four patients who had no evidence of brain metastases the sensitivity, specificity and correlation of limited brain MR imaging were compared with conventional brain MR imaging. Results : All the 43 patients who were examined with conventional brain MR imaging showed evidence of brain metastases, whereas limited brain MR imaging indicated that 42 patients had brain metastases(sensitivity=97.67%). One patient in whom limited brain MR imaging showed no brain metastasis had a metastasis in the cerebellum, as shown by the contrast-enhanced T1 weighted axial view using conventional brain MR imaging. The conventional brain MR imaging and the limited brain MI imaging of the 4 control patients both indicated no brain metastases (specificity=100 %). The Pearson Correlation of the two groups was 0.884(Confidence Interval : 99%) observed. Conclusion : Limited brain MR imaging can detect a brain metastasis with the same accuracy. In addition, it is cost-effective (229,000 won, 180$) compared to conventional brain MR imaging(529,000 won, 480$) when patients had neurological symptoms and signs or staging.

Cerebellar maturation ratio of forebrain and brainstem at magnetic resonance imaging in the micropig

  • Yi, Kang-Jae;Kim, Jun-Young;Lee, Namsoon;Choi, Mihyun;Yoon, Jung-Hee;Choi, Min-Cheol
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.83-87
    • /
    • 2012
  • The study of pigs as a human disease model has been conducted in neuroscience. But the morphological development of pig brain by using MRI is rare. The purpose of this study is to determine whether cerebellum maintains consistent proportion to other brain regions in aging. Clinically healthy sixteen micropigs, 1, 2, 4, and 8 months were studied. The micropigs were anesthetized with isoflorane. MRI was acquired using a 0.3T system. To figure out development of ratio that allowed identification of normal cerebellum size, we measured the area of the cerebellum, brainstem, and forebrain from the mid-sagittal brain images on T1W. Mid-sagittal cross-sectional area (CSA) of total brain, forebrain, brainstem, and cerebellum were expressed as absolute values and also as percentages which were compared between the four age groups of micropigs for the purpose to define the effect of age on brain morphometry. It was found that there was not a significant difference in the percentage of the brain occupied by an individual region between groups although the absolute CSA differed significantly among age groups. There was no effect of age on the ratio between the cerebellum and total brain in 4 age groups. The normal size of cerebellum changes during brain development maintained a consistent ratio to other brain regions in normal micropigs. The ratio of CSA quantified on the mid-sagittal MR images offers a suitable method to detect presence of cerebellar anomalies in micropigs.

Arterial Spin Labeling Magnetic Resonance Imaging in Healthy Adults: Mathematical Model Fitting to Assess Age-Related Perfusion Pattern

  • Ying Hu;Rongbo Liu;Fabao Gao
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1194-1202
    • /
    • 2021
  • Objective: To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods: In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results: Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion: In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.

In vivo functional photoacoustic imaging (나노초 레이져를 이용한 광-초음파 이미지 결상법)

  • Oh, Jung-Taek;Li, Meng-Lin;Song, Kwang-Hyun;Xie, Xueyi;Stoica, George;Wang, Lihong V.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.359-360
    • /
    • 2006
  • Functional photoacoustic tomography is a new non-invasive imaging modality, and it is emerging as a very practical method for imaging biological tissue structures by means of laser-induced ultrasound. Structures with high optical absorption, such as blood vessels, can be imaged with the spatial resolution of ultrasound, which is not limited by the strong light scattering in biological tissues. By varying wavelengths of the laser light and acquiring photoacoustic images, optical absorption spectrum of each image pixel is found. Since the biochemical constituents of tissues determine the spectrum, useful functional information like oxygen saturation ($SO_2$) and total haemoglobin concentration (HbT) can be extracted. In this study, as a proof-of-principle experiment, hypoxic brain tumor vasculature and traumatic brain injury (TBI) of small animal brain are imaged with functional photoacoustic tomography. High resolution brain vasculature images of oxygen saturation and total hemoglobin concentration are provided to visualize hypoxic tumor vasculature, and hemorrhage on the cortex surface by the TBI.

  • PDF

A Review on Brain Study Methods in Elementary Science Education - A Focus on the fMRl Method - (초등 과학 교육에서 두뇌 연구 방법의 고찰 - fMRI 활용법을 중심으로 -)

  • Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • The higher cognitive functions of the human brain including teaming are hypothesized to be selectively distributed across large-scale neural networks interconnected to the cortical and subcortical areas. Recently, advances in functional imaging have made it possible to visualize the brain areas activated by certain cognitive activities in vivo. Neural substrates for teaming and motivation have also begun to be revealed. Functional magnetic resonance imaging (fMRI) provides a non-invasive indirect mapping of cerebral activity, based on the blood- oxygen level dependent (BOLD) contrast which is based on the localized hemodynamic changes following neural activities in certain areas of the brain. The fMRI method is now becoming an essential tool used to define the neuro-functional mechanisms of higher brain functions such as memory, language, attention, learning, plasticity and emotion. Further research in the field of education will accelerate the verification of the effects on loaming or help in the selection of model teaching strategies. Thus, the purpose of this study was to review brain study methods using fMRI in science education. In conclusion, a number of possible strategies using fMRI for the study of elementary science education were suggested.

  • PDF

A review of the Implementation of Functional Brain Imaging Techniques in Auditory Research focusing on Hearing Loss (청각 연구에서 기능적 뇌 영상 기술 적용에 대한 고찰: 난청을 중심으로)

  • Hye Yoon Seol;Jaeyoung Shin
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Functional brain imaging techniques have been used to diagnose psychiatric disorders such as dementia, depression, and autism. Recently, these techniques have also been actively used to study hearing loss. The present study reviewed the application of the functional brain imaging techniques in auditory research, especially those focusing on hearing loss, over the past decade. EEG, fMRI, fNIRS, MEG, and PET have been utilized in auditory research, and the number of research studies using these techniques has been increasing. In particular, fMRI and EEG were the most frequently used technique in auditory research. EEG studies mostly used event-related designs to analyze the direct relationship between stimulus and the related response, and in fMRI studies, resting-state functional connectivity and block designs were utilized to analyze alterations in brain functionality in hearing-related areas. In terms of age, while studies involving children mainly focused on congenital and pre- and post-lingual hearing loss to analyze developmental characteristics with and without hearing loss, those involving adults focused on age-related hearing loss to investigate changes in the characteristics of the brain based on the presence of hearing loss and the use of a hearing device. Overall, ranging from EEG to PET, various functional brain imaging techniques have been used in auditory research, but it is difficult to perform a comprehensive analysis due to the lack of consistency in experimental designs, analysis methods, and participant characteristics. Thus, it is necessary to develop standardized research protocols to obtain high-quality clinical and research evidence.

The Role of $^{18}F$-Fluorodeoxyglucose Positron Emission Tomography in the Treatment of Brain Abscess

  • Park, Seong-Hyun;Lee, Sang-Woo;Kang, Dong-Hun;Hwang, Jeong-Hyun;Sung, Joo-Kyung;Hwang, Sung-Kyoo
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.5
    • /
    • pp.278-283
    • /
    • 2011
  • Objective : The purpose of this study was to evaluate whether $^{18}F$-fluorodeoxyglucose positron emission tomography (FOG-PET) can be used to assess the therapeutic response of brain abscess. Methods : A study was conducted on 10 consecutive patients with brain abscess, Magnetic resonance imaging (MRI) with diffuse-weighted imaging (DWI) was performed at 3 and 6 weeks after surgical treatment and intravenous antibiotics therapy and FOG-PET at 6 weeks after treatment. The extent of the abscess, signal changes on MRI, and FOG-PET standardized uptake values were analyzed and correlated with the response to therapy. Results : Aspiration or craniotomy with excision of the abscess followed by intravenous antibiotics for 6-8 weeks resulted in good recovery with no recurrence. In 10 patients, two had low signal intensity on the DWI; one had no uptake on FOG-PET imaging after 6 weeks antibiotics and discontinued intravenous treatment, but the other patient had diffuse, increased uptake on FOG-PET imaging after 6 weeks antibiotics and underwent an additional 2 weeks of intravenous antibiotics. The remaining eight patients had high signals on the DWI. Four had no uptake on FOG-PET imaging and the treatment period varied from 6 to 8 weeks (mean, 6.75 weeks). Among the other four patients, FOG was accumulated in a diffuse or local area corresponding to a high signal area within the DWI and 2 weeks of intravenous antibiotics was added. Conclusion : MRI plus FOG-PET improved the accuracy of assessing therapeutic responses to antibiotics treatment of brain abscess and aided in optimizing therapy.

Brain Hypoxia Imaging (뇌 저산소증 영상)

  • Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The measurement of pathologically low levels of tissue $pO_2$ is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowaday have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. $^{18}F-MISO$ PET and $^{99}mTc-EC-metronidazole$ SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using $^{123}I-IAZA$ in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.