• Title/Summary/Keyword: Brain glioma

Search Result 155, Processing Time 0.027 seconds

Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images

  • Kulkarni, Sunita M.;Sundari, G.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

  • Wen, Min;Jung, Shin;Moon, Kyung-Sub;Jiang, Shen Nan;Li, Song-Yuan;Min, Jung-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.131-135
    • /
    • 2014
  • Objective : With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique. Methods : U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft. Results : The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors. Conclusion : The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.

Microglial Contribution to Glioma Progression: an Immunohistochemical Study in Eastern India

  • Ghosh, Krishnendu;Ghosh, Samarendranath;Chatterjee, Uttara;Chaudhuri, Swapna;Ghosh, Anirban
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2767-2773
    • /
    • 2016
  • Human glioma, arising from glial cells of the central nervous system, accounts for almost 30%of all brain tumours, neoplasms with a poor prognosis and high mortality rates worldwide. In the present study we assessed tissue architectural modifications associated with macrophage lineage cells, controversial major immune effector cells within the brain, in human glioma tissue samples from eastern India. Ethically cleared post-operative human glioma samples from our collaborative neurosurgery unit with respective CT/MRI and patient history were collected from the Nodal Centre of Neurosciences in Kolkata, over 9 months. Along with conventional histopathology, samples were subjected to silver-gold staining and fluorescence tagged immunophenotyping for the detection of electron dense brain macrophage/microglia cells in glioma tissue, followed by immune-phenotyping of cells. With higher grades, CD11b+/Iba-1+ macrophage/microglia architecture with de-structured boundaries of glioma lesions indicated malfunction and invasive effector state. Present study documented a contribution of microglia to glioma progression in Eastern India.

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin;Koo, JaeHyung
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.601-607
    • /
    • 2021
  • Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.

UHRF2 mRNA Expression is Low in Malignant Glioma but Silencing Inhibits the Growth of U251 Glioma Cells in vitro

  • Wu, Ting-Feng;Zhang, Wei;Su, Zuo-Peng;Chen, San-Song;Chen, Gui-Lin;Wei, Yong-Xin;Sun, Ting;Xie, Xue-Shun;Li, Bin;Zhou, You-Xin;Du, Zi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5137-5142
    • /
    • 2012
  • UHRF2 is a member of the ubiquitin plant homeo domain RING finger family, which has been proven to be frequently up-regulated in colorectal cancer cells and play a role as an oncogene in breast cancer cells. However, the role of UHRF2 in glioma cells remains unclear. In this study, we performed real-time quantitative PCR on 32 pathologically confirmed glioma samples (grade I, 4 cases; grade II, 11 cases; grade III, 10 cases; and grade IV, 7 cases; according to the 2007 WHO classification system) and four glioma cell lines (A172, U251, U373, and U87). The expression of UHRF2 mRNA was significantly lower in the grade III and grade IV groups compared with the noncancerous brain tissue group, whereas its expression was high in A172, U251, and U373 glioma cell lines. An in vitro assay was performed to investigate the functions of UHRF2. Using a lentivirus-based RNA interference (RNAi) approach, we down-regulated UHRF2 expression in the U251 glioma cell line. This down-regulation led to the inhibition of cell proliferation, an increase in cell apoptosis, and a change of cell cycle distribution, in which S stage cells decreased and G2/M stage cells increased. Our results suggest that UHRF2 may be closely related to tumorigenesis and the development of gliomas.

Expanded Endoscopic Transnasal Approach to the Chordoid Glioma of the Third Ventricle : The First Case Ever Reported

  • Zeinalizadeh, Mehdi;Sadrehosseini, Seyed Mousa;Meybodi, Keyvan Tayebi;Sharifabadi, Ali Heidari
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.643-646
    • /
    • 2016
  • Chordoid glioma of the third ventricle is a rare and challenging tumor to surgery because of its unique anatomical location and its close juxtaposition to the neurovascular structures and hypothalamus. The authors report a case of chordoid glioma of the third ventricle in a 43-year-old woman, who presented with headache and somnolence. The tumor was approached by endoscopic transnasal technique with a favorable result. Histopathologic examination disclosed a neoplastic tissue composed of eosinophilic epithelioid cells, mucinous, periodic acid Schiff-diastase positive, extracellular matrix, and scattered lymphoplasmacytic infiltrates. The best treatment option remains controversial. Customarily, the surgical route to remove chordoid glioma is transcranial; however, the undersurface of the optic chiasm and optic nerves preclude an adequate surgical visualization. In contrast, an expanded endoscopic transnasal approach provides a direct midline corridor to this region without any brain retraction.

Korean Brain Tumor Society Consensus Review for the Practical Recommendations on Glioma Management in Korea

  • Chul-Kee Park;Jong Hee Chang
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.3
    • /
    • pp.308-315
    • /
    • 2023
  • Recent updates in genomic-integrated glioma classification have caused confusion in current clinical practice, as management protocols and health insurance systems are based on evidence from previous diagnostic classifications. The Korean Brain Tumor Society conducted an electronic questionnaire for society members, asking for their ideas on risk group categorization and preferred treatment for each individual diagnosis listed in the new World Health Organization (WHO) classification of gliomas. Additionally, the current off-label drug use (OLDU) protocols for glioma management approved by the Health Insurance Review and Assessment Service (HIRA) in Korea were investigated. A total of 24 responses were collected from 20 major institutes in Korea. A consensus was reached on the dichotomic definition of risk groups for glioma prognosis, using age, performance status, and extent of resection. In selecting management protocols, there was general consistency in decisions according to the WHO grade and the risk group, regardless of the individual diagnosis. As of December 2022, there were 22 OLDU protocols available for the management of gliomas in Korea. The consensus and available options described in this report will be temporarily helpful until there is an accumulation of evidence for effective management under the new classification system for gliomas.

Malignant Brain Tumours in Children : Present and Future Perspectives

  • Rutka, James T.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.402-406
    • /
    • 2018
  • In contrast to many of the malignant tumors that occur in the central nervous system in adults, the management, responses to therapy, and future perspectives of children with malignant lesions of the brain hold considerable promise. Within the past 5 years, remarkable progress has been made with our understanding of the basic biology of the molecular genetics of several pediatric malignant brain tumors including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumour, and high grade glioma/diffuse intrinsic pontine glioma. The recent literature in pediatric neuro-oncology was reviewed, and a summary of the major findings are presented. Meaningful sub-classifications of these tumors have arisen, placing children into discrete categories of disease with requirements for targeted therapy. While the mainstay of therapy these past 30 years has been a combination of central nervous system irradiation and conventional chemotherapy, now with the advent of high resolution genetic mapping, targeted therapies have emerged, and less emphasis is being placed on craniospinal irradiation. In this article, the present and future perspective of pediatric brain malignancy are reviewed in detail. The progress that has been made offers significant hope for the future for patients with these tumours.

High Expression of KIFC1 in Glioma Correlates with Poor Prognosis

  • Pengfei Xue;Juan Zheng;Rongrong Li;Lili Yan;Zhaohao Wang;Qingbin Jia;Lianqun Zhang;Xin Li
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.364-375
    • /
    • 2024
  • Objective : Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. Methods : Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. Results : The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. Conclusion : Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

Metallothinein 1E Enhances Glioma Invasion through Modulation Matrix Metalloproteinases-2 and 9 in U87MG Mouse Brain Tumor Model

  • Hur, Hyuk;Ryu, Hyang-Hwa;Li, Chun-Hao;Kim, In Young;Jang, Woo-Youl;Jung, Shin
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.551-558
    • /
    • 2016
  • Malignant glioma cells invading surrounding normal brain are inoperable and resistant to radio- and chemotherapy, and eventually lead to tumor regrowth. Identification of genes related to motility is important for understanding the molecular biological behavior of invasive gliomas. According to our previous studies, Metallothionein 1E (MT1E) was identified to enhance migration of human malignant glioma cells. The purpose of this study was to confirm that MT1E could modulate glioma invasion in vivo. Firstly we established 2 cell lines; MTS23, overexpressed by MT1E complementary DNA construct and pV12 as control. The expression of matrix metalloproteinases (MMP)-2, -9 and a disintegrin and metalloproteinase 17 were increased in MTS23 compared with pV12. Furthermore it was confirmed that MT1E could modulate MMPs secretion and translocation of NFkB p50 and B-cell lymphoma-3 through small interfering ribonucleic acid knocked U87MG cells. Then MTS23 and pV12 were injected into intracranial region of 5 week old male nude mouse. After 4 weeks, for brain tissues of these two groups, histological analysis, and immunohistochemical stain of MMP-2, 9 and Nestin were performed. As results, the group injected with MTS23 showed irregular margin and tumor cells infiltrating the surrounding normal brain, while that of pV12 (control) had round and clear margin. And regrowth of tumor cells in MTS23 group was observed in another site apart from tumor cell inoculation. MT1E could enhance tumor proliferation and invasion of malignant glioma through regulation of activation and expression of MMPs.