• Title/Summary/Keyword: Brain energy

Search Result 258, Processing Time 0.033 seconds

Fabrication of Multi-layered Macroscopic Hydrogel Scaffold Composed of Multiple Components by Precise Control of UV Energy

  • Roh, Donghyeon;Choi, Woongsun;Kim, Junbeom;Yu, Hyun-Yong;Choi, Nakwon;Cho, Il-Joo
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • Hydrogel scaffolds composed of multiple components are promising platform in tissue engineering as a transplantation materials or artificial organs. Here, we present a new fabrication method for implementing multi-layered macroscopic hydrogel scaffold composed of multiple components by controlling height of hydrogel layer through precise control of ultraviolet (UV) energy density. Through the repetition of the photolithography process with energy control, we can form several layers of hydrogel with different height. We characterized UV energy-dependent profiles with single-layered PEGDA posts photocrosslinked by the modular methodology and examined the optical effect on the fabrication of multi-layered, macroscopic hydrogel structure. Finally, we successfully demonstrated the potential applicability of our approach by fabricating various macroscopic hydrogel constructs composed of multiple hydrogel layers.

No Late Effect of Ionizing Radiation on the Aging-Related Oxidative Changes in the Mouse Brain

  • Jang, Beom-Su;Kim, Seolwha;Jung, Uhee;Jo, Sung-Kee
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.203-207
    • /
    • 2010
  • Radiation-induced late injury to normal tissue is a primary area of radiation biology research. The present study was undertaken to investigate whether the late effect of the ionizing radiation appears as an age-related oxidative status in the brain. Three groups of 4-month old C57BL/6 mice that were exposed to $^{137}Cs$ ${\gamma}-rays$ at a single dose (5 Gy) or fractionated doses ($1Gy{\times}5times$, or $0.2Gy{\times}25times$) at 2 months old were investigated for the oxidative status of their brains with both young (2-month) and old (24-month) mice. A significant (p<0.05) decrease in superoxide dismutase (SOD) activity was observed in old mice brains compared with that of the young mice. malondialdehyde (MDA) content was significantly (p<0.05) increased in the old mice brain. However, any significant difference in SOD activity and MDA contents of the irradiated brain was not observed compared to age-matched control group mice. SOD activity and MDA content were observed within good parameters of brain aging and there were no late effects on the age-related oxidative level in the ${\gamma}-ray$ irradiated mice brains.

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF

Novel anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase

  • Lee, Ki-Up
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.3-4
    • /
    • 2003
  • Body weight is maintained at a relatively constant level over days and months despite variability in food intake and physical activity. To achieve energy homeostasis, the hypothalamus receives information related to energy surplus or shortage from the periphery and controls food intake and energy expenditure. Leptin, an adipocyte derived hormone, is a principal mediator that signals the brain about the stored energy status. Increased leptin signaling in the brain prevents excess energy stores by suppressing food intake and increasing energy expenditure. In addition, insulin and nutrients themselves, such as glucose and free fatty acids, also regulate food intake.

  • PDF

Overexpression, Purification, and Preliminary X-ray Crystallographic Analysis of Human Brain-Type Creatine Kinase

  • Bong, Seung-Min;Moon, Jin-Ho;Jang, Eun-Hyuk;Lee, Ki-Seog;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.295-298
    • /
    • 2008
  • Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transfered through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at $22^{\circ}C$ using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to $2.2{\AA}$ resolution using synchrotron radiation. The crystals belonged to the tetragonal space group $P4_32_12$, with cell parameters of a=b=97.963, $c=164.312{\AA},\;and\;{\alpha}={\beta}={\gamma}=90^{\circ}$. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass $(V_m)$ of $1.80{\AA}^3\;Da^{-1}$ and a solvent content of 31.6%.

Post-Traumatic Cerebral Infarction Following Low-Energy Penetrating Craniocerebral Injury Caused by a Nail

  • Chen, Po-Chuan;Tsai, Shih-Hung;Chen, Yu-Long;Liao, Wen-I
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.293-295
    • /
    • 2014
  • Post-traumatic cerebral infarction (PTCI) is a secondary insult which causes global cerebral hypoxia or hypoperfusion after traumatic brain injury, and carries a remarkable high mortality rate. PTCI is usually caused by blunt brain injury with gross hematoma and/or brain herniation. Herein, we present the case of a 91-year-old male who had sustained PTCI following a low-energy penetrating craniocerebral injury due to a nail without evidence of hematoma. The patient survived after a decompressive craniectomy, but permanent neurological damage occurred. This is the first case of profound PTCI following a low-energy penetrating craniocerebral nail injury and reminds clinicians of possibility this rare dreadful complication for care of head-injured patients.

일본ME학회 학술대회 참관기

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.135-138
    • /
    • 1988
  • In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality.

  • PDF

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.

Study on the meaning and biological function of brain in Nei-jing(內經) (내경(內經)에 나타난 뇌(腦)의 개념(槪念) 및 생리적(生理的) 기능(機能)에 관(關)한 연구(硏究))

  • Kim, Ki-Rok;Hong, Seok;Kang, Hwa-Jeong
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.48-56
    • /
    • 1999
  • This study has been carried out to investigate Brain in Nei-jing. The results of this study were as follows. 1. Kidney energy becomes the marrow by warm caring function of Meong-mun(命門) and the marrow becomes brain by ascending and gathering between a hole Back-hoi(百會) and a hole pung-ji(風池) 2. Brain is a sea of the marrow that five vital organs are eraporated togather. 3. In Nei-jing(內經), there is a explanation the connectin between brain and mind, thanking by drawing in a concept of head. 4. Brain regulrates physical excercise. 5. There is a direct connection between brain and biosis. 6. Brain achieves function of sense, relating with the five sensory organs. 7. Brain controls a change of emotion. 8. Brain has immunological function.

  • PDF

A Comparative Study on the Energy Metabolism of Brains of Several Vertebtrates with Respect to Their Phyogeny (척추동물 뇌조직의 Energy 대사에 관한 계통학적 비교연구)

  • 박상윤
    • The Korean Journal of Zoology
    • /
    • v.7 no.2
    • /
    • pp.25-36
    • /
    • 1964
  • The present paper deals with the comparative study on phylogenic difference in the patterns of energy metabolism of brain slices of several vertebrate species by measuring oxygen consumptionwith glucose-6-phosphate, glucose-1-phosphate, glyceraldehyde-3-phosphate or glutamate as respiratory substrate employing Warburg's manometric method, by determination of the utilization rate of glucose using glucose-1-C14 by analyzing patterns of free amino acid distribution , and by histochemical determination using glucose-1-C14 by analyzing patterns of free amino acid distribution acid distribution , and by histochemical determination of glycogen contents. 1. Glucose enhances the oxygen consumption of brain slices of animals belinging to reptile, aves and mammalia while it shows a tendency to decrease that of animals belonging to pisces and amphibia. 2. Glucose-6--phosphate increase oxygen consumption more than glucose in every species examined, while glucose-1-phosphate and glyceraldehyde-3-phosphate increase that of Rana nigromaculata only . In general m, it appears that phosphosugars are more effective as a respiratory substrate to those species which have less endogenous respiration than to those having larger endogenous respiration. 3. Similar patterns of free amino acid distribution and the relative amount are found among the species and in every species examined glutamic acid is detected in the larges amount . ${\gamma}$-Amino butyric acid, glycine, alanine and aspartic acid are found in every species. 4. Ophicephalus showed less oxygen consumption than endogenous respiration when glutamate was added to the medium. When sodium fluoride was added, the oxygen consumption was some what increased . Such phenomenon wasnot found in the frog. 5. The result of histochemcial analysis of the brain showed that glycogen was abundantly present in the fish , amphibia , and especially in the reptile and that no distinctive grains of glycogen were found in the bird and mammal . From these facts, it may be supposed that anaerobic glycolysis as energy source dominates in fish and amphibia and aerobic respiration through the oxidation of glucose dominates in bird and mamal , the reptile occupying transitional position between these two categories. The way of obtaining energy for brain activity by the oxidation of glucose supplied from the circulating blood is seemed to be first acquired by reptile and the function is completed both in aves and mammal.

  • PDF