Browse > Article

Overexpression, Purification, and Preliminary X-ray Crystallographic Analysis of Human Brain-Type Creatine Kinase  

Bong, Seung-Min (Division of Biotechnology, College of Life Sciences, Korea University)
Moon, Jin-Ho (Division of Biotechnology, College of Life Sciences, Korea University)
Jang, Eun-Hyuk (Division of Biotechnology, College of Life Sciences, Korea University)
Lee, Ki-Seog (Division of Biotechnology, College of Life Sciences, Korea University)
Chi, Young-Min (Division of Biotechnology, College of Life Sciences, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 295-298 More about this Journal
Abstract
Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transfered through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at $22^{\circ}C$ using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to $2.2{\AA}$ resolution using synchrotron radiation. The crystals belonged to the tetragonal space group $P4_32_12$, with cell parameters of a=b=97.963, $c=164.312{\AA},\;and\;{\alpha}={\beta}={\gamma}=90^{\circ}$. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass $(V_m)$ of $1.80{\AA}^3\;Da^{-1}$ and a solvent content of 31.6%.
Keywords
Brain-type creatine kinase; shuttle system; energy homeostasis;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Fritz-Wolf, K., T. Schnyder, T. Wallimann, and W. Kabsch. 1996. Structure of mitochondrial creatine kinase. Nature 381: 341-345   DOI   ScienceOn
2 Grosse, R., E. Spitzer, V. V. Kupriyanov, V. A. Saks, and K. R. Repke. 1980. Coordinate interplay between (Na+ + K+)- ATPase and creatine phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim. Biophys. Acta 603: 142-156   DOI   ScienceOn
3 Guerrero, M. L., J. Beron, B. Spindler, P. Groscurth, T. Wallimann, and F. Verrey. 1997. Metabolic support of Na+ pump in apically permeabilized A6 kidney cell epithelia: Role of creatine kinase. Am. J. Physiol. 272: C697-C706   DOI
4 Kaldis, P., W. Hemmer, E. Zanolla, D. Holtzman, and T. Wallimann. 1996. Hot spots of creatine kinase localization in brain: Cerebellum, hippocampus and choroid plexus. Dev. Neurosci. 18: 542-554   DOI   ScienceOn
5 Pruett, P. S., A. Azzi, S. A. Clark, M. S. Yousef, J. L. Gattis, T. Somasundaram, W. R. Ellington, and M. S. Chapman. 2003.The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J. Biol. Chem. 278: 26952-26957   DOI   ScienceOn
6 Eder, M., K. Fritz-Wolf, W. Kabsch, T. Wallimann, and U. Schlattner. 2000. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins 39: 216-225   DOI   ScienceOn
7 Ohren, J. F., M .L. Kundracik, C. L. Borders, P. Edmistonb, and E. R. Viola. 2007. Structural asymmetry and intersubunit communication in muscle creatine kinase. Acta Crystallogr. D 63: 381-389
8 Walliman, T. and W. Hemmer. 1994. Creatine kinase in nonmuscle tissues and cells. Mol. Cell. Biochem. 133-134: 193-220   DOI   ScienceOn
9 Eder, M., U. Schlatter, A. Becker, T. Wallimann, W. Kabsch, and K. Fritz-Wolf. 1999. Crystal structure of brain-type creatine kinase at 1.41 $\AA$ resolution. Protein Sci. 8: 2258-2269   DOI   ScienceOn
10 Abraham, M. R., V. A. Selivanov, D. M. Hodgson, D. Pucar, L. V. Zingman, B. Wieringa, P. P. Dzeja, A. E. Alekseev, and A. Terzic. 2002. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J. Biol. Chem. 277: 24427-24434   DOI   ScienceOn
11 Mcleish, M. J. and G. L. Kenyon. 2005. Relating structure to mechanism in creatine kinase. Biochem. Mol. Biol. 40: 1-20   DOI   ScienceOn
12 Shen, Y. Q., L. Tang, H. M. Zhou, and Z. J. Lin. 2001. Structure of human muscle creatine kinase. Acta Crystallogr. D 57: 1196-1200   DOI   ScienceOn
13 Tisi, D., B. Bax, and A. Loew. 2000. The three-dimensional structure of cytosolic bovine retinal creatine kinase. Acta Crystallogr. D 57: 187-193
14 David, S., M. Shoemaker, and B. E. Haley. 1998. Abnormal properties of creatine kinase in Alzheimer's disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol. Brain Res. 54: 276-287   DOI
15 Rao, J. K., G. Bujacz, and A. Wlodawer. 1998. Crystal structure of rabbit muscle creatine kinase. FEBS Lett. 439: 133-137   DOI
16 Crawford, R. M., H. J. Ranki, C. H. Botting, G. R. Budas, and A. Jovanovic. 2002. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J. 16: 102-104   DOI
17 Matthews, B. W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497   DOI
18 McCoy, A. J., R. W. Grosse-Kunstleve, L. C. Storoni, and R. J. Read. 2005. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61: 458-464
19 Aksenov, M. Y., M. V. Aksenova, R. M. Payne, C. D. Smith, W. R. Markesbery, and J. M. Carney. 1997. The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease. Exp. Neurol. 146: 458-465   DOI   ScienceOn
20 Lahiri, S. D., P. F. Wang, P. C. Babbitt, M. J. McLeish, G. L. Kenyon, and K. N. Allen. 2002. The 2.1 $\AA$ structure of Torpedo californica creatine kinase complexed with the $ADP-Mg^{2+}-NO^{3-}-creatine$ transition-state analogue complex. Biochemistry 41: 13861-13867   DOI   ScienceOn