• Title/Summary/Keyword: Brain Computer Interface

Search Result 196, Processing Time 0.031 seconds

Accuracy Comparison of Motor Imagery Performance Evaluation Factors Using EEG Based Brain Computer Interface by Neurofeedback Effectiveness (뉴로피드백 효과에 따른 EEG 기반 BCI 동작 상상 성능 평가 요소별 정확도 비교)

  • Choi, Dong-Hag;Ryu, Yon-Su;Lee, Young-Bum;Min, Se-Dong;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • In this study, we evaluated the EEG based BCI algorithm using common spatial pattern to find realistic applicability using neurofeedback EEG based BCI algorithm - EEG mode, feature vector calculation, the number of selected channels, 3 types of classifier, window size is evaluated for 10 subjects. The experimental results have been evaluated depending on conditioned experiment whether neurofeedback is used or not In case of using neurofeedback, a few subjects presented exceptional but general tendency presented the performance improvement Through this study, we found a motivation of development for the specific classifier based BCI system and the assessment evaluation system. We proposed a need for an optimized algorithm applicable to the robust motor imagery evaluation system with more useful functionalities.

A Study on the Generation Method of Visual-Auditory Feedback for BCI Rhythm Game (BCI 리듬게임을 위한 시청각 피드백 생성에 관한 연구)

  • Kim, Cheol-Min;Kang, Gyeong-Heon;Kim, Eun-Seok
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.15-26
    • /
    • 2013
  • In recent years, studies in BCI game with popular BCI devices are progressing actively by the development of BCI(Brain Computer Interface) techniques. Most of BCI games have developed as experimental contents for researching. On the game control paradigm, it is insufficient to conduct a study about induced methods of proper barinwave to control the BCI game. In this study, we suggest a rhythm game using BCI which has a new play element that visualizes the rhythm of music and represents the notes of music in sound and a generation method of visual-auditory feedback through the synchronization of the tempo of music with brainwave. Experimental Results make certain that our suggestion is possible for the improvement of game score through the induction of brainwave that is necessary to control the game.

Orthonormal Polynomial based Optimal EEG Feature Extraction for Motor Imagery Brain-Computer Interface

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we explored the new method for extracting feature from the electroencephalography (EEG) signal based on linear regression technique with the orthonormal polynomial bases. At first, EEG signals from electrodes around motor cortex were selected and were filtered in both spatial and temporal filter using band pass filter for alpha and beta rhymic band which considered related to the synchronization and desynchonization of firing neurons population during motor imagery task. Signal from epoch length 1s were fitted into linear regression with Legendre polynomials bases and extract the linear regression weight as final features. We compared our feature to the state of art feature, power band feature in binary classification using support vector machine (SVM) with 5-fold cross validations for comparing the classification accuracy. The result showed that our proposed method improved the classification accuracy 5.44% in average of all subject over power band features in individual subject study and 84.5% of classification accuracy with forward feature selection improvement.

A Study on Development of EEG-Based Password System Fit for Lifecaretainment (라이프케어테인먼트에 적합한 뇌파 기반 패스워드 시스템 개발에 관한 연구)

  • Yang, Gi-Chul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.525-530
    • /
    • 2019
  • Electroencephalography(EEG) studies that have been in clinical research since the discovery of brainwave have recently been developed into brain-computer interface studies. Currently, research is underway to manipulate robot arms and drones by analyzing brainwave. However, resolution and reliability of EEG information is still limited. Therefore, it is required to develop various technologies necessary for measuring and interpreting brainwave more accurately. Pioneering new applications with these technologies is also important. In this paper, we propose development of a personal authentication system fit for lifecaretainment based on EEG. The proposed system guarantees the resolution and reliability of EEG information by using the Electrooculogram and Electromyogram(EMG) together with EEG.

Power-Efficient Wireless Neural Stimulating System Design for Implantable Medical Devices

  • Lee, Hyung-Min;Ghovanloo, Maysam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 2015
  • Neural stimulating implantable medical devices (IMDs) have been widely used to treat neurological diseases or interface with sensory feedback for amputees or patients suffering from severe paralysis. More recent IMDs, such as retinal implants or brain-computer interfaces, demand higher performance to enable sophisticated therapies, while consuming power at higher orders of magnitude to handle more functions on a larger scale at higher rates, which limits the ability to supply the IMDs with primary batteries. Inductive power transmission across the skin is a viable solution to power up an IMD, while it demands high power efficiencies at every power delivery stage for safe and effective stimulation without increasing the surrounding tissue's temperature. This paper reviews various wireless neural stimulating systems and their power management techniques to maximize IMD power efficiency. We also explore both wireless electrical and optical stimulation mechanisms and their power requirements in implantable neural interface applications.

Automatic measurement of voluntary reaction time after audio-visual stimulation and generation of synchronization signals for the analysis of evoked EEG (시청각자극 후의 피험자의 자의적 반응시간의 자동계측과 유발뇌파분석을 위한 동기신호의 생성)

  • 김철승;엄광문;손진훈
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • Recently, there have been many attempts to develop BCI (brain computer interface) based on EEG (electroencephalogram). Measurement and analysis of EEG evoked by particular stimulation is important for the design of brain wave pattern and interface of BCI. The purpose of this study is to develop a general-purpose system that measures subject's reaction time after audio-visual stimulation which can work together with any other biosignal measurement systems. The entire system is divided into four modules, which are stimulation signal generation, reaction time measurement, evoked potential measurement and synchronization. Stimulation signal generation module was implemented by means of Flash. Measurement of the reaction time (the period between the answer request and the subject reaction) was achieved by self-made microcontroller system. EEG measurement was performed using the ready-made hardware and software without any modification. Synchronization of all modules was achieved by, first, the black-and-white signals on the stimulation screen synchronized with the problem presentation and the answer request, second, the photodetectors sensing the signals. The proposed method offers easy design of purpose-specific system only by adding simple modules (reaction time measurement, synchronization) to the ready-made stimulation and EEG system, and therefore, it is expected to accelerate the researches requiring the measurement of evoked response and reaction time.

  • PDF

ERS Feature Extraction using STFT and PSO for Customized BCI System (맞춤형 BCI시스템을 위한 STFT와 PSO를 이용한 ERS특징 추출)

  • Kim, Yong-Hoon;Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.429-434
    • /
    • 2012
  • This paper presents a technology for manipulating external devices by Brain Computer Interface (BCI) system. Recently, BCI based rehabilitation and assistance system for disabled people, such as patient of Spinal Cord Injury (SCI), general paralysis, and so on, is attracting tremendous interest. Especially, electroencephalogram (EEG) signal is used to organize the BCI system by analyzing the signals, such as evoked potential. The general findings of neurophysiology support an availability of the EEG-based BCI system. We concentrate on the event-related synchronization of motor imagery EEG signal, which have an affinity with an intention for moving control of external device. To analyze the brain activity, short-time Fourier transform and particle swarm optimization are used to optimal feature selection from the preprocessed EEG signals. In our experiment, we can verify that the power spectral density correspond to range mu-rhythm(${\mu}8$~12Hz) have maximum amplitude among the raw signals and most of particles are concentrated in the corresponding region. Result shows accuracy of subject left hand 40% and right hand 38%.

Motor Imagery based Application Control using 2 Channel EEG Sensor (2채널 EEG센서를 활용한 운동 심상기반의 어플리케이션 컨트롤)

  • Lee, Hyeon-Seok;Jiang, Yubing;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.257-263
    • /
    • 2016
  • Among several technologies related to human brain, Brain Computer Interface (BCI) system is one of the most notable technologies recently. Conventional BCI for direct communication between human brain and machine are discomfort because normally electroencephalograghy(EEG) signal is measured by using multichannel EEG sensor. In this study, we propose 2-channel EEG sensor-based application control system which is more convenience and low complexity to wear to get EEG signal. EEG sensor module and system algorithm used in this study are developed and designed and one of the BCI methods, Motor Imagery (MI) is implemented in the system. Experiments are consisted of accuracy measurement of MI classification and driving control test. The results show that our simple wearable system has comparable performance with studies using multi-channel EEG sensor-based system, even better performance than other studies.

The amplifier-circuit design of EEG sensor based on MEMS (초소형정밀기계기술이 적용된 뇌파센서의 신호 증폭 회로설계)

  • Choi, Sung-Ja;Lee, Seung-Han;Cho, Young-Taek;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1427-1428
    • /
    • 2015
  • MEMS(Micro Electro-mechanical System) are getting attention as promising industry in the 21st century. Car air bags, acceleration sensors, and medical, information appliances are being actively applied in MEMS. This paper suggest the electrical electrodes of brain signal applied MEMS model and the prototype design for EEG signal amplification circuit. Also, we suggest an independent BCI(Brain Computer Interface) system with brain electrical signal of electrode models and wireless communication platform.

  • PDF

A Study on Developmental Direction of Interface Design for Gesture Recognition Technology

  • Lee, Dong-Min;Lee, Jeong-Ju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.499-505
    • /
    • 2012
  • Objective: Research on the transformation of interaction between mobile machines and users through analysis on current gesture interface technology development trend. Background: For smooth interaction between machines and users, interface technology has evolved from "command line" to "mouse", and now "touch" and "gesture recognition" have been researched and being used. In the future, the technology is destined to evolve into "multi-modal", the fusion of the visual and auditory senses and "3D multi-modal", where three dimensional virtual world and brain waves are being used. Method: Within the development of computer interface, which follows the evolution of mobile machines, actively researching gesture interface and related technologies' trend and development will be studied comprehensively. Through investigation based on gesture based information gathering techniques, they will be separated in four categories: sensor, touch, visual, and multi-modal gesture interfaces. Each category will be researched through technology trend and existing actual examples. Through this methods, the transformation of mobile machine and human interaction will be studied. Conclusion: Gesture based interface technology realizes intelligent communication skill on interaction relation ship between existing static machines and users. Thus, this technology is important element technology that will transform the interaction between a man and a machine more dynamic. Application: The result of this study may help to develop gesture interface design currently in use.