• Title/Summary/Keyword: Brain

Search Result 11,059, Processing Time 0.035 seconds

Multiple brain abscesses treated by extraction of the maxillary molars with chronic apical lesion to remove the source of infection

  • Jung, Ki-Hyun;Ro, Seong-Su;Lee, Seong-Won;Jeon, Jae-Yoon;Park, Chang-Joo;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.25.1-25.5
    • /
    • 2019
  • Background: Brain abscess is a life-threatening condition that occurs due to complications during a neurosurgical procedure, direct cranial trauma, or the presence of local or distal infection. Infection in the oral cavity can also be considered a source of brain abscess. Case presentation: A 45-year-old male patient was transported with brain abscess in the subcortical white matter. Navigation-guided abscess aspiration and drainage was performed in the right mid-frontal lobe, but the symptoms continued to worsen after the procedure. A panoramic radiograph showed alveolar bone resorption around the maxillary molars. The compromised maxillary molars were extracted under local anesthesia, and antibiotics were applied based on findings from bacterial culture. A brain MRI confirmed that the three brain abscesses in the frontal lobe were reduced in size, and the patient's symptoms began to improve after the extractions. Conclusion: This is a rare case report about multiple uncontrolled brain abscesses treated by removal of infection through the extraction of maxillary molars with odontogenic infection. Untreated odontogenic infection can also be considered a cause of brain abscess. Therefore, it is necessary to recognize the possibility that untreated odontogenic infection can lead to serious systemic inflammatory diseases such as brain abscess. Through a multidisciplinary approach to diagnosis and treatment, physicians should be encouraged to consider odontogenic infections as a potential cause of brain abscesses.

Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

  • Tun, Temdara;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [$^3H$]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter.

Survival of Brain Metastatic Patients in Yazd, Iran

  • Akhavan, Ali;Binesh, Fariba;Heidari, Samaneh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3571-3574
    • /
    • 2014
  • Background: Brain metastasis occurs when cancerous cells come from a known (or sometimes an unknown) primary tumor to the brain and implant and grow there. This event is potentially lethal and causes neurologic symptoms and signs. These patients are treated in order to decrease their neurologic problems, increase quality of life and overall survival. Materials and Methods: In this study we evaluated clinical characteristics of 206 patients with brain metastases referred to our center from 2004 to 2011. Results: The mean age was 53.6 years. The primary tumors were breast cancer (32%), lung cancer (24.8%), lymphoma (4.4%), sarcoma (3.9%), melanoma (2.9%), colorectal cancer (2.4%) and renal cell carcinoma (1.5%). In 16.5% of the patients, brain metastasis was the first presenting symptom and the primary site was unknown. Forty two (20.4%) patients had a single brain metastasis, 18 patients (8.7%) had two or three lesions, 87 (42.2%) patients had more than three lesions. Leptomeningeal involvement was seen in 49 (23.8%) patients. Thirty five (17%) had undergone surgical resection. Whole brain radiation therapy was performed for all of the patients. Overall survival was 10.1 months (95%CI; 8.65-11.63). One and two year survival was 27% and 12% respectively. Conclusions: Overall survival of patients who were treated by combination of surgery and whole brain radiation therapy was significantly better than those who were treated with whole brain radiation therapy only [13.8 vs 9.3 months (p=0.03)]. Age, sex, primary site and the number of brain lesions did not show significant relationships with overall survival.

Whole Brain Radiotherapy Combined with Stereotactic Radiotherapy Versus Stereotactic Radiotherapy Alone for Brain Metastases: a Meta-analysis

  • Duan, Lei;Zeng, Rong;Yang, Ke-Hu;Tian, Jin-Hui;Wu, Xiao-Lu;Dai, Qiang;Niu, Xiao-Dong;Ma, Di-Wa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.911-915
    • /
    • 2014
  • Aim: This study was to evaluate the effect of whole brain radiation (WBRT) combined with stereotactic radiotherapy (SRS) versus stereotactic radiotherapy alone for patients with brain metastases using a meta-analysis. Materials and Methods: We searched PubMed, EMBASE, Cochrane Library from their inception up to October 2013. Randomized controlled trials involving whole brain radiation combined with stereotactic radiotherapy versus stereotactic radiotherapy alone for brain metastases were included. Statistical analyses were performed using RevMan5.2 software. Results: Four randomized controlled trials including 903 patients were included. The meta-analysis showed statistically significant lowering of the local recurrence rate (OR=0.29, 95%CI: 0.17~0.49), new brain metastasis rate (OR=0.45, 95%CI: 0.28~0.71) and symptomatic late neurologic radiation toxicity rate (OR=3.92, 95%CI: 1.37~11.20) in the combined group. No statistically significant difference existed in the 1-year survival rate (OR=0.78, 95%CI: 0.60~1.03). Conclusions: The results indicate that whole brain radiotherapy combined with stereotactic radiotherapy has advantages in local recurrence and new brain metastasis rates, but stereotactic radiotherapy alone is associated with better neurological function. However, as the samples included were not large, more high-quality, large-sample size studies are necessary for confirmation.

Factors Related to Outcomes of Subthalamic Deep Brain Stimulation in Parkinson's Disease

  • Kim, Hae Yu;Chang, Won Seok;Kang, Dong Wan;Sohn, Young Ho;Lee, Myung Sik;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.2
    • /
    • pp.118-124
    • /
    • 2013
  • Objective : Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment of choice for patients with advanced idiopathic Parkinson's disease (PD) who have motor complication with medication. The objectives of this study are to analyze long-term follow-up data of STN DBS cases and to identify the factors related to outcomes. Methods : Fifty-two PD patients who underwent STN DBS were followed-up for more than 3 years. The Unified Parkinson's Disease Rating Scale (UPDRS) and other clinical profiles were assessed preoperatively and during follow-up. A linear regression model was used to analyze whether factors predict the results of STN DBS. We divided the study individuals into subgroups according to several factors and compared subgroups. Results : Preoperative activity of daily living (ADL) and the magnitude of preoperative levodopa response were shown to predict the improvement in UPDRS part II without medication, and preoperative ADL and levodopa equivalent dose (LED) were shown to predict the improvement in UPDRS part II with medication. In UPDRS part III with medication, the magnitude of preoperative levodopa response was a predicting factor. Conclusion : The intensity of preoperative levodopa response was a strong factor for motor outcome. And preoperative ADL and LED were strong factors for ADL improvement. More vigorous studies should be conducted to elucidate how levodopa-induced motor complications are ameliorated after STN DBS.

Development of a Magnetoencephalograph System for Small Animals (소동물용 뇌자도 측정 시스템 개발)

  • Kim, J.E.;Kim, I.S.;Kang, C.S.;Kwon, H.;Kim, J.M.;Lee, Y.H.;Kim, K.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good spatial resolution for a small mouse brain. We evaluated the current dipole localization confidence region for a mouse brain, using the spherical conductor model. The white noise of the measurement system was about 30 fT/$Hz^{1/2}$/cm when measured in a magnetically shielded room. We measured magnetic signal from a phantom having the same size of a mouse brain, which was filled with 0.9% saline solution. The results suggest that the developed system has a feasibility to study the functions of brain of small animals.

New Protein Extraction/Solubilization Protocol for Gel-based Proteomics of Rat (Female) Whole Brain and Brain Regions

  • Hirano, Misato;Rakwal, Randeep;Shibato, Junko;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Iwahashi, Hitoshi;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.119-125
    • /
    • 2006
  • The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using precast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, ingel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

Quantitative EEG research by the brain activities on the various fields of the English education (영어학습 유형별 뇌기능 활성화에 대한 정량뇌파연구)

  • Kwon, Hyung-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.541-550
    • /
    • 2009
  • This research attempted to find out any implications for strategies to design and develop the connections between the activities of the brain function and the fields of English learning (dictation, word level, speaking, word memory, listening). Thus, in developing the brain based learning model for the English education, attempts need to be made to help learners to keep the whole brain toward learning. On this point, this study indicated the significant results for the exclusive brain location and the brainwaves on the each English learning field by the quantitative EEG analysis. The results of this study presented the guidelines for the balanced development of the left brain and the right brain to train the specific site of the brain connected to the English learning fields. In addition, whole brain training model is developed by the quantitative EEG data not by the theoretical learning methods focused on the right brain training.

  • PDF

Comparison of Lipid Profiles in Head and Brain Samples of Drosophila Melanogaster Using Electrospray Ionization Mass Spectrometry (ESI-MS)

  • Jang, Hyun Jun;Park, Jeong Hyang;Lee, Ga Seul;Lee, Sung Bae;Moon, Jeong Hee;Choi, Joon Sig;Lee, Tae Geol;Yoon, Sohee
    • Mass Spectrometry Letters
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model ($miR-14{\Delta}^1$) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the $miR-14{\Delta}^1$ model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in $miR-14{\Delta}^1$. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.

Effects of a Single Session of Brain Yoga on Brain-Derived Neurotrophic Factor and Cognitive Short-Term Memory in Men Aged 20-29 Years

  • Yang, Hyun-Seong;Kim, Hyun-Jun;Lee, Hwa-Gyeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.91-103
    • /
    • 2021
  • Purpose : This study aimed to evaluate the effects of a cognitive enhancement brain yoga program on short-term memory and serum brain-derived neurotrophic factor (BDNF) levels according to the cognitive state in men aged 20-29 years. Methods : Thirty healthy volunteers aged 20-29 years were divided into four groups: brain yoga group, yoga group, combined exercise group, and control group. Seven people were assigned randomly per group. A single-session intervention was conducted over 50 min and consisted of three parts: warm-up, main exercise (brain yoga, yoga, combined exercise, or non-exercise), and cool-down. Serum BDNF levels were measured using enzyme-linked immunosorbent assay, and short-term memory was evaluated using the forward number span test before and after the intervention. Results : BDNF levels significantly increased within the brain yoga group after the intervention (from 28874.37±5185.57 to 34074.80±7321.12, p=.003), whereas there were no significant differences pre-and post-intervention in the other groups. The inter-group comparison showed a significant interaction between the brain yoga group and the combined exercise group (p=.036) but no significant interaction between any of the other groups. Forward number span scores were significantly increased in the brain yoga group (from 9.43±9.83 to 23±7.92, p=.012) and theyoga group after the intervention (from 13.43±9.41 to 24.14±8.45, p=.011), whereas there were no significant changes after the intervention in any other groups. Conclusion : Our findings showed that a single-session, 50-minute brain yoga exercise improved short-term memory and increased serum BDNF levels in healthy men aged 20-29 years and that yoga improved only short-term memory in healthy men of this age group.