• Title/Summary/Keyword: Brain, infection

Search Result 350, Processing Time 0.029 seconds

Cigarette Smoke Attenuates Histopathological and Neurobiological Changes Caused by 87V Scrapie Agent Infection in IM Mice

  • Sohn Hyung-Ok;Hyun Hak-Chul;Shin Han-Jae;Han Jung-Ho;Park Chul-Hoon;Moon Ja-Young;Lim Heung-Bin;Kim Yong-Sun;Lee Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.212-218
    • /
    • 2005
  • Cigarette smoking has been known to have a few beneficial effects on some neuronal diseases such as Alzheimer's disease(AD), Parkinson's disease(PD) and prion disease by scrapie agent shows many similar properties with AD. In this respect, we investigated what biological effects are exerted by cigarette smoke exposure(CSE) in the brain of mouse infected by 87V scrapie. The scrapie agent was inoculated through stereotaxic microinjection of the homogenates of the scrapie agent infected brain into the intracerebral system in the 1M mice. The inoculation into mice typically exhibits neurochemical, physiological and histopathological characteristics of prion disease: loss of neurotransmitters and induction of astrocytosis and vacuolation in brain as well as reduction of spatial movement and loss of body weight. CSE led to alleviated the loss of body weight and also improved spatial movement of the infected mice. Most interestingly, CSE attenuated astrocytosis and vacuolation caused by scrapie infection in the brain. In addition, decreased levels of dopamine in striatal and hypothalamic regions as well as serotonin level in hippocampus caused by scrapie infection were also attenuated by exposure to cigarette smoke. These findings suggest that cigarette smoke, by its inhibition of astrocytosis and vacuolation followed by its restoration of levels of some neurotransmitters, may partly contribute to suppression in the progress of neurodegeneration caused by scrapie infection.

Immunopathological Changes in the Brain of Immunosuppressed Mice Experimentally Infected with Toxocara canis

  • Eid, Mohamed M.;El-Kowrany, Samy I.;Othman, Ahmad A.;El Gendy, Dina I.;Saied, Eman M.
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.

Enhanced Viral Replication by Cellular Replicative Senescence

  • Ji-Ae Kim;Rak-Kyun Seong;Ok Sarah Shin
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.286-295
    • /
    • 2016
  • Cellular replicative senescence is a major contributing factor to aging and to the development and progression of aging-associated diseases. In this study, we sought to determine viral replication efficiency of influenza virus (IFV) and Varicella Zoster Virus (VZV) infection in senescent cells. Primary human bronchial epithelial cells (HBE) or human dermal fibroblasts (HDF) were allowed to undergo numbers of passages to induce replicative senescence. Induction of replicative senescence in cells was validated by positive senescence-associated b-galactosidase staining. Increased susceptibility to both IFV and VZV infection was observed in senescent HBE and HDF cells, respectively, resulting in higher numbers of plaque formation, along with the upregulation of major viral antigen expression than that in the non-senescent cells. Interestingly, mRNA fold induction level of virus-induced type I interferon (IFN) was attenuated by senescence, whereas IFN-mediated antiviral effect remained robust and potent in virus-infected senescent cells. Additionally, we show that a longevity-promoting gene, sirtuin 1 (SIRT1), has antiviral role against influenza virus infection. In conclusion, our data indicate that enhanced viral replication by cellular senescence could be due to senescence-mediated reduction of virus-induced type I IFN expression.

An Acute Pathophysiology of Environmental Strains of Cryptococcus neoformans Isolated from a Park in Busan

  • Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.139-149
    • /
    • 2010
  • The present study was carried out to elucidate whether an environmental strain of Cryptococcus neoformans (environmental C. neoformans) isolated from an environmental source in a park of Busan has an acute pathophysiological effect in rats. On the second day after peritoneal inoculation of environmental C. neoformans, adverse effects occurred from the viewpoint of hematology and biochemistry. Eosinophil damages and crystal formations were found in the blood. Disturbances in cytokines production were observed in the cerebral and pulmonary tissues. Fungal budding existed in the brain, lung, liver and kidney. Tissue injury findings such as inflammation, leukocyte infiltration, bleeding, or degeneration were found in the brain, lung, liver and kidney. The present data suggest that the environmental C. neoformans can cause systematically harmful effects even for short periods of infection (two days of cryptococcal infection) and the adverse effects are summarized as immune derangements and biochemical and/or histological dysfunction and injury on major organ such as the brain, lung, liver and kidney in the immunocompetent hosts. Further studies should be focused on comparing the differences between environmental and clinical strains of C. neoformans.

Promising candidate cerebrospinal fluid biomarkers of seizure disorder, infection, inflammation, tumor, and traumatic brain injury in pediatric patients

  • Kim, Seh Hyun;Chae, Soo Ahn
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.2
    • /
    • pp.56-64
    • /
    • 2022
  • Cerebrospinal fluid (CSF) is a dynamic metabolically active body fluid that has many important roles and is commonly analyzed in pediatric patients, mainly to diagnose central nervous system infection and inflammation disorders. CSF components have been extensively evaluated as biomarkers of neurological disorders in adult patients. Circulating microRNAs in CSF are a promising class of biomarkers for various neurological diseases. Due to the complexity of pediatric neurological disorders and difficulty in acquiring CSF samples from pediatric patients, there are challenges in developing CSF biomarkers of pediatric neurological disorders. This review aimed to provide an overview of novel CSF biomarkers of seizure disorders, infection, inflammation, tumor, traumatic brain injuries, intraventricular hemorrhage, and congenital hydrocephalus exclusively observed in pediatric patients.

Infection Route of Scuticociliates in the Juvenile of the Cultured Flounder, Paralichthys olivaceus (양식넙치, Paralichthys olivaceus 치어의 스쿠티카충 감염경로)

  • Jin, Chang-Nam;Lee, Chang-Hun;O, Sang-Pil;Na, O-Su;Heo, Mun-Su
    • Journal of fish pathology
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • The infection characteristics with scuticociliates at on-land rearing farms and hatcheries of flounder, Paralithys olivaceus was investigated during the year of 2001 by juvenile infection routes. When culture tanks for living food organisms such as chlorella, rotifer, and Artemia were searched, scuticocilates were detected both in live and dead rotifer, and at the dregs of culture tank bottoms at almost hatcheries. When rotifer infected with scuticocilates fed on fish larvae, lots of scuticocilate were inhabited at the bottom of fry rearing tanks. After feeding on scuticocilates-infected rotifer on fish larvae, first infection was detected at 10 days after bottom dwelling or 40 days old after hatching. By histopathological examination we confirmed the infection route of eyeball or brain contamination was that the ciliate worms digged through mouth and front part of the dosal fin cuticle, transferred into eyeball along the epithelium and muscle tissue, and reached finally into brain by the muscle and nerve tissue. The infection of internal organs was clarified into two routes. The first route was started from the infection at ventral and anal fin rays by the worms, and reached at the anus and rectum through the epithelium and muscle tissue. The second route was initiated from the infection at urinary organ and reached into the rectum epithelium cells, inner wall of intestine, abdominal cavity, pancreas, kidney, and pancreas. At seed production farms where fish larvae fed on scuticocilate-free rotifer, the worms were not detected not only at the food organisms culture tanks and juvenile rearing tanks but also larval flounder less than 7cm in total length.

Temporal Transcriptome Analysis of SARS-CoV-2-Infected Lung and Spleen in Human ACE2-Transgenic Mice

  • Jung Ah, Kim;Sung-Hee, Kim;Jung Seon, Seo;Hyuna, Noh;Haengdueng, Jeong;Jiseon, Kim;Donghun, Jeon;Jeong Jin, Kim;Dain, On;Suhyeon, Yoon;Sang Gyu, Lee;Youn Woo, Lee;Hui Jeong, Jang;In Ho, Park;Jooyeon, Oh;Sang-Hyuk, Seok;Yu Jin, Lee;Seung-Min, Hong;Se-Hee, An;Joon-Yong, Bae;Jung-ah, Choi;Seo Yeon, Kim;Young Been, Kim;Ji-Yeon, Hwang;Hyo-Jung, Lee;Hong Bin, Kim;Dae Gwin, Jeong;Daesub, Song;Manki, Song;Man-Seong, Park;Kang-Seuk, Choi;Jun Won, Park;Jun-Won, Yun;Jeon-Soo, Shin;Ho-Young, Lee;Jun-Young, Seo;Ki Taek, Nam;Heon Yung, Gee;Je Kyung, Seong
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.896-910
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.

Study on the pathogenesis of canine herpesvirus infection II. Immunohistochemical observation (Canine herpesvirus 감염증의 병리발생에 관한 연구 II. 면역조직화학적 관찰)

  • Seo, Il-bok;Lim, Chang-hyeong
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.3
    • /
    • pp.583-591
    • /
    • 1994
  • This study was carried out to investigate the pathogenesis of canine herpesvirus(CHV) infection in dogs. The 17 puppies, one day old, delivered from CHV seronegative 3 dams were divided into two groups. The 13 puppies were inoculated intranasally with 1ml of CHV-KK inoculum($5{\times}10^{5.6}TCID_{50}/ml$) and 4 puppies were served as control. And then the puppies were sacrificed at 2, 4, 6 and 7 days after the treatment, and sampled nasal mucosa, trigeminal nerve, trigeminal ganglion, bone marrow, eye, brain and other major organs for the immunohistochemical examination. Distribution of CHV antigens was limited in cytoplasms and nuclei of necrotic nasal epthelia at 2 days after infection. At 4 days after infection, CHV antigens were detected in vascular walls and peripheral nerves of nasal lamina propria, reticuloendothelial cells of spleen, interstitium of kidney, leptomeningeal vascular walls and alveolar walls, At 6 and 7 days after infection, CHV antigens were detected in all of the necrotic area. CHV antigens were also detected in vascular endothelial cells of various organs and in blood leukocytes from 4 days after infection. Among the six puppies in which necrotic lesions of central nervous system were observed, CHV antigens were detected in trigeminal ganglion, trigeminal nerve and ventroposteriomedial nucleus of four puppies and in spinal trigeminal nucleus of three puppies. These results indicate that the generalized focal necrosis of all organs including brain and eyes in canine herpesvirus infection were resulted from generalized vasculitis with leukocyte-associated viremia, and also the hemonecrotizing meningoencephalitis was resulted from spreading of CHV via blood and nerve trunk.

  • PDF

The Efficacy of 9-($\beta$-D-Arabinofuranosyl)adenine and its Conjugate of Prednisone (BR-8702-AP) in the Treatment of Herpes simplex Virus Type 1 Encephalitis in Mice (단순 포진 바이러스 감염 생쥐에 대한 아데닌 아라비노사이드와 그의 프레드니손 결합화합물인 BR-8702-AP의 항바이러스 효과)

  • 채희상;신원섭;신현종;백우현
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.98-102
    • /
    • 1993
  • The therapeutic effectiveness of adenine arabinoside(tora-A) and its conjugate of prednisone(BR-8702-AP) was compared in Herpes simplex Virus Type 1 (HSV-1) infected BALB/C mice. The BALB/C mouse was infected with HSV-1(700 PFU/mouse) intranasally. Among mice infected intranasally with virus, a mortality rate of 100% was observed. On the oral administration of non-toxic doses of ara-A or BR-8702-AP(125 mg /kg/day) for 5 consecutive days 2 hours after virus infection, the tora-A was highly effective in reducing mortality to 0% (P<0.001) and BR-8702-AP was also effective in reducing mortality to 15% (P<0.01). In this model infection, the virus was first replicated in the lung and transmitted to the brain. Both arts-A and BR-8702-AP did not inhibit the viral replication in the lung, but they inhibited the viral transmission to the brain. However, the BR-8702-AP was less effective than the aria-A to prevent transmission of virus to brain. Therefore, the reduced mortality due to tora-A or BR-8702-AP therapy was associated with inhibition of viral transmission to brain.

  • PDF

Neuronal Vacuolation in a Pekingese (Pekingese에서의 Neuronal Vacuolation)

  • 김재훈;김진현;윤화영;박영찬;김대용;임정식
    • Journal of Veterinary Clinics
    • /
    • v.19 no.2
    • /
    • pp.247-249
    • /
    • 2002
  • A 6-month-old female Pekingese was euthanized due to poor progrosis after 1 month history of neurologic signs that include depression, ataxia, urination and defecation difficulty. At necropsy, no significant gross abnormalities were noted Histologically, neuronal vacuolation was noted in the brain, primarily cerebellum and occasionally in the brain stem area. Neuronal necrosis and secondary axonal swelling were also observed. Differential diagnoses were able to rule out other diseases which can induce neuronal vacuolation such as lysosomal storage disease, prion infection, and postvaccinal change.