• Title/Summary/Keyword: Brain

Search Result 10,836, Processing Time 0.039 seconds

The Analysis of Researches on the Brain-based Teaching and Learning for Elementary Science Education (초등과학교육에의 적용을 위한 뇌-기반 학습 연구의 교육적 의미 분석)

  • Choi, Hye Young;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.140-161
    • /
    • 2014
  • The purpose of this study was to analyze 181 papers about brain-based learning appeared in domestic scientific journals from 1989 to May of 2012 and suggest application conditions in elementary science education. The results of this study summarizes as follows; First, learning activity suggested by brain-based learning study is mainly explained by working of brain function. Learning activity explained by brain-based learning study are divided into 'learning according to specialized brain function, learning according to brain function integration and learning beyond specialization and integration of hemispheres'. Second, it searched how increased knowledge of brain structure and function affects learning. Analysis from this point of view suggests that brain-based learning study affects learning in many ways especially emotion, creativity and learning motivation. Third, brain-based learning study suggests various possibilities of learning activity reflecting brain plasticity. Plasticity which is one of most important characteristics of brain supports the validity of learning activity as learning disorder treatment and explains the possibility of selective increment of brain function by leaning activity and the need of whole-brain approach to learning activity. Fourth, brain-based learning brought paradigm shifts in education field. It supports learning sophistication on the understanding of student's learning activity, guides learning method that reflects the characteristics of subject and demands reconstruction of curriculum. Fifth, there are many conditions to apply brain-based learning in elementary science education field, learning environment that fits brain-based learning, change of perspectives on teaching and learning of science educators and development of brain-based learning curriculum are needed.

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

Effective Dose Determination From CT Head & Neck Region (두경부(Head & Neck) CT 검사 시 장기의 유효선량 측정)

  • Yun, Jae-Hyeok;Lee, Kwang-Weon;Cho, Young-Ki;Choi, Ji-Won;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • In this study, we present the measurements of effective dose from CT of head & neck region. A series of dose measurements in anthropomorphic Rando phantom was conducted using a radio photoluminescent glass rod dosimeter to evaluate effective doses of organs of head and neck region from the patient. The experiments were performed with respect to four anatomic regions of head & neck: optic nerve, pons, cerebellum, and thyroid gland. The head & neck CT protocol was used in the single scan (Brain, 3D Facial, Temporal, Brain Angiography and 3D Cervical Spine) and the multiple scan (Brain+Brain Angiography, Brain+3D Facial, Brain+Temporal, Brain+3D Cervical spine, Brain+3D Facial+Temporal, Brain+3D Cervical Spine+Brain Angiography). The largest effective dose was measured at optic nerve in Brain CT and Brain Angiography. The largest effective dose was delivered to the thyroid grand in 3D faical CT and 3D cervical spine, and to the pons in Temporal CT. In multiple scans, the higher effective dose was measured in the thyroid grand in Brain+3D Facial, Brain+3D Cervical Spine, Brain+3D Facial+Temporal and Brain+3D Cervical Spine+Brain Angiography. In addition, the largest effective dose was delivered to the cerebellum in Brain CT+Brain Angiography CT and higher effective dose was delivered to the pons in Brain+Temporal CT. The results indicate that in multiple scan of Brain+3D Cervical Spine+Brain Angiography, effective dose was 2.52 mSv. This is significantly higher dose than the limitation of annual effective dose of 1 mSv. The effective dose to the optic nerve was 0.31 mSv in Brain CT, which shows a possibility of surpassing the limitation of 1 mSv by furthre examination. Therefore, special efforts should be made in clinical practice to reduce dose to the patients.

KBUD: The Korea Brain UniGene Database

  • Jeon, Yeo-Jin;Oh, Jung-Hwa;Yang, Jin-Ok;Kim, Nam-Soon
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.86-93
    • /
    • 2005
  • Human brain EST data provide important clues for our understanding of the molecular biology associated with the function of the normal brain and the molecular pathophysiology with brain disorders. To systematically and efficiently study the function and disorders of the human brain, 45,773 human brain ESTs were collected from 27 human brain cDNA libraries, which were constructed from normal brains and brain disorders such as brain tumors, Parkinson's disease (PO) and epilepsy. An analysis of 45,773 human brain ESTs using our EST analysis pipeline resulted in 38,396 high-quality ESTs and 35,906 ESTs, which were coalesced into 8,246 unique gene clusters, showing a significant similarity to known genes in the human RefSeq, human mRNAs and UniGene database. In addition, among 8,246 gene clusters, 4,287 genes ($52\%$) were found to contain full-length cONA clones. To facilitate the extraction of useful information in collected these human brain ESTs, we developed a user-friendly interface system, the Korea Brain Unigene Database (KBUD). The KBUD web interface allows access to our human brain data through three major search modes, the BioCarta pathway, keywords and BLAST searches. Each result when viewed in KBUD offers comprehensive information concerning the analyzed human brain ESTs provided by our data as well as data linked to various other publiC databases. The user-friendly developed KBUD, the first world-wide web interface for human brain EST data with ESTs of human brain disorders as well as normal brains, will be a helpful system for developing a better understanding of the underlying mechanisms of the normal brain well as brain disorders. The KBUD system is freely accessible at http://kugi.kribb.re.kr/KU/cgi -bin/brain. pI.

Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids

  • Yook, Jang Soo;Lee, Minchul
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • [Purpose] Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. [Methods] In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. [Results] The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. [Conclusion] This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.

Influence of History of Brain Disease or Brain Trauma on Psychopathological Abnormality in Young Male in Korea : Analysis of Multiphasic Personal Inventory Test

  • Paik, Ho-Kyu;Oh, Chang-Hyun;Choi, Kang;Kim, Chul-Eung;Yoon, Seung-Hwan;Chung, Joon-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.2
    • /
    • pp.114-118
    • /
    • 2011
  • Objective : The purpose of this study is to confirm whether brain disease or brain trauma actually affect psychopathology in young male group in Korea. Methods : The authors manually reviewed the result of Korean military multiphasic personal inventory (KMPI) in the examination of conscription in Korea from January 2008 to May 2010. There were total 237 young males in this review. Normal volunteers group (n=150) was composed of those who do not have history of brain disease or brain trauma. Brain disease group (n=33) was consisted of those with history of brain disease. Brain trauma group (n=54) was consisted of those with history of brain trauma. The results of KMPI in each group were compared. Results : Abnormal results of KMPI were found in both brain disease and trauma groups. In the brain disease group, higher tendencies of faking bad response, anxiety, depression, somatization, personality disorder, schizophrenic and paranoid psychopathy was observed and compared to the normal volunteers group. In the brain trauma group, higher tendencies of faking-good, depression, somatization and personality disorder was observed and compared to the normal volunteers group. Conclusion : Young male with history of brain disease or brain trauma may have higher tendencies to have abnormal results of multiphasic personal inventory test compared to young male without history of brain disease or brain trauma, suggesting that damaged brain may cause psychopathology in young male group in Korea.

In vivo Brain-to-blood Efflux Transport of Choline at the Blood-brain Barrier

  • Lee Na-Young;Kang Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.45-49
    • /
    • 2006
  • The purpose of this study was to clarify the efflux transport system of choline from brain to blood across the blood-brain barrier (BBB) in rats using the brain efflux index (BEI) method. $[^3H]$Choline was micro-injected into parietal cortex area 2 (Par2) of the rat brain, and was eliminated from the brain with elimination halflife of 45 min. The BBB efflux clearance of $[^3H]$choline was about 124 mL/min/g brain, which was determined from combination of an elimination rate constant $(1.54X10^{-2}min^{-1})$ and the distribution volume in the brain (8.05 mL/g brain). The efflux of $[^3H]$choline was inhibited by unlabeled choline in a dose-dependent manner and was significantly inhibited by cationic substrates, such as hemicholinium-3 and tetraethylammonium (TEA). These results suggest that the BBB may act as an efflux pump for choline to reduce the excessive choline concentration in the brain interstitial fluid.

Pheochromocytoma with Brain Metastasis: A Extremely Rare Case in Worldwide

  • Cho, Yun Seong;Ryu, Hyang Joo;Kim, Se Hoon;Kang, Seok-Gu
    • Brain Tumor Research and Treatment
    • /
    • v.6 no.2
    • /
    • pp.101-104
    • /
    • 2018
  • Pheochromocytoma (PCC) is a neuroendocrine tumor that mainly arises from the medulla of the adrenal gland. Some PCCs become malignant and metastasize to other organs. For example, it typically involves skeletal system, liver, lung, and regional lymph nodes. However, only a few cases of PCC with brain metastasis have been reported worldwide. We report a case of metastatic brain tumor from PCC in South Korea in 2016. A 52-year-old man presented with headache, dizziness and motor aphasia. He had a medical history of PCC with multi-organ metastasis, previously underwent several operations, and was treated with chemotherapy and radiotherapy. Brain MRIs showed a brain tumor on the left parietal lobe. Postoperative pathology confirmed that the metastatic brain tumor derived from malignant PCC. This is the first report PCC with brain metastasis in South Korea.

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

  • Lee, Yong-Woo;Cho, Hyung-Joon;Lee, Won-Hee;Sonntag, William E.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.357-370
    • /
    • 2012
  • Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.