• Title/Summary/Keyword: Bracken growth

Search Result 3, Processing Time 0.019 seconds

Nutrient Contents of Bracken (Pteridium aquilinum L.) and Soil Chemical Properties of Its Habitat in the Coastal Area (남서해안 고사리 생육지의 토양화학적 특성과 고사리식물체의 무기성분 함량)

  • Lee, Soo-Young;Park, Kang-Yong;Park, Yang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.631-636
    • /
    • 2010
  • One experiment was carried out to investigate the soil chemical properties of bracken growth and the inorganic element contents of plant. To the results of soil analysis in native bracken (Pteridium aquilinum L.) growth, soil pH was 5.2, organic matter was 19 g $kg^{-1}$ and available phosphate was 20 mg $kg^{-1}$, and exchangeable potassium, calcium, magnesium were 0.32, 2.0 and 1.3 $cmol_c\;kg^{-1}$, respectively. In the bracken cultivation soil, pH was 5.7, organic matter was 13 g $kg^{-1}$ and available phosphate 367 mg $kg^{-1}$, and exchangeable potassium, calcium and magnesium were 0.81, 4.0 and 1.4 $cmol_c\;kg^{-1}$, respectively. The soil pH, available phosphate and exchangeable calcium were much lower in bracken native soil than those of cultivation soil, while organic matter was a little higher in native soil than that of cultivation soil. In native bracken plants, three major elements of nitrogen, phosphorus and potassium, were 4.40, 0.55 and 3.40%, calcium and magnesium were 0.22 and 0.32%, and microelements of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron were 126, 210, 23, 75 and 11 mg $kg^{-1}$, respectively. In cultivation bracken, three major elements of nitrogen, phosphorus and potassium, were 5.50, 0.73 and 3.55%, calcium and magnesium were 0.17 and 0.28%, and microelement contents of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron (B) were 120, 252, 19, 72 and 20 mg $kg^{-1}$, respectively.

Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables (전처리 나물류 및 구근류에서 병원성 미생물의 성장예측모델 개발 및 검증)

  • Enkhjargal, Lkhagvasarnai;Min, Kyung Jin;Yoon, Ki Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1690-1700
    • /
    • 2013
  • The objective of this study is to develop and validate predictive growth models for Bacillus cereus (diarrhea type) vegetative cells, spores and Staphylococcus aureus in preprocessed Namul (bracken and Chwinamul) and root vegetables (bellflower and burdock). For validation of model performance, growth data for S. aureus in preprocessed vegetables were collected at independent temperatures (18 and $30^{\circ}C$) not used in the model development. In addition, model performance of B. cereus (diarrhea type) in preprocessed vegetables was validated with an emetic type of B. cereus strain. In primary models, the specific growth rate (SGR) of the B. cereus spores was faster than that of the B. cereus vegetative cells, regardless of the kinds of vegetables at 24 and $35^{\circ}C$, while lag time (LT) of the B. cereus spores was longer than that of the B. cereus vegetative cells, except for burdock. The growth of B. cereus and S. aureus was not observed in bracken at temperatures lower than 13 and $8^{\circ}C$, respectively. The LT models for B. cereus (diarrhea type) in this study were suitable in predicting the growth of B. cereus (emetic type) on burdock and Chwinamul. On the other hand, SGR models for B. cereus (diarrhea type) were suitable for predicting the growth of B. cereus (emetic type) on all preprocessed vegetables. The developed models can be used to predict the risk of B. cereus and S. aureus in preprocessed Namul and root vegetables at the retail markets.

Effect of Medium Components and Culture Methods on Prothallus Propagation of Pteridium aquilinum var. latiusculum (Desv.) Underw. ex Hell. (고사리 전엽체의 증식에 미치는 배지구성물질과 배양방법의 영향)

  • Shin, So-Lim;Lee, Moo-Yeul;Choi, Jae-Sun;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.337-342
    • /
    • 2009
  • Present studies were conducted to evaluate the effects of medium strength(MS and Hyponex), carbon sources and their concentrations, agar concentrations, and inoculation amounts on prothallus propagation of Pterdium aquilinum var. latiusculum(Desv.) Underw. ex Hell in vitro. The optimum MS medium strength for prothallus propagation was 2MS concentration. Phosphate source was most effective for prothallus growth of P. aquilinum var. latisculum. The addition of 1% sucrose or glucose to MS medium promoted prothallus multiplication. Growth of prothallus was not affected by agar concentration. Propagation of homogenized prothallus was vigorous even in liquid medium. Chopped gametophytes(100 and 200 mg) were inoculated on 250 ml ${\Delta}$flask with 100 mL of 2MS concentration medium and suspension culture was done at 100 rpm for 22 days. After 20 days, prothallus multiplication slowed down, so 100 mg of chopped prothalli is recommended for initial inoculation, since initial amount of inoculum did not affect subsequent prothallus multiplication. Consequently after 20 days of suspension culture, prothallus should be subcultured or transplanted outside of growing vessels.