• 제목/요약/키워드: Braced wall

검색결과 68건 처리시간 0.033초

스틸하우스 전단벽체의 내진성능평가 (Evaluation of Seismic Performance on Shear Walls in Steel House)

  • 이재석;이승은;홍건호;김원기
    • 한국지진공학회논문집
    • /
    • 제6권6호
    • /
    • pp.65-72
    • /
    • 2002
  • 최근의 건축물 내진 설계 추세에 맞추어, 박판의 냉간성형강으로 제작되는 스틸하우스 전단벽체의 내진 성능을 평가하였다. 시험체는 브레이싱의 종류에 따라 변수를 두었다. 반복가력의 결과로는 에너지소산 능력을 살펴보았는데, 브레이싱 부재로 형강을 사용한 시험체가 판재를 사용한 시험체 보다 우수하였다. 또한, 유사동적실험을 통해서는 면재를 사용한 전단벽체 보다. 스틸하우스 전단벽체 중 하나인 X-브레이싱 형태와 유사한 X2SPCH의 내진성능이 비교적 우수함이 판명되었다.

Development of a simplified equivalent braced frame model for steel plate shear wall systems

  • Chatterjee, Arghya Kamal;Bhowmick, Anjan;Bagchi, Ashutosh
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.711-737
    • /
    • 2015
  • Steel Plate Shear Walls (SPSWs) have been accepted widely as an effective lateral load resisting system. For seismic performance evaluation of a multi-story building with SPSWs, detailed finite element models or a strip model can be used to represent the SPSW components. However, such models often require significant effort for tall or medium height buildings. In order to simplify the analysis process, discrete elements for the framing members can be used. This paper presents development of a simplified equivalent braced model to study the behavior of the SPSWs. The proposed model is expected to facilitate a simplification to the structural modeling of large buildings with SPSWs in order to evaluate the seismic performance using regular structural analysis tools. It is observed that the proposed model can capture the global behavior of the structures quite accurately and potentially aid in the performance-based seismic design of SPSW buildings.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

BRACED EXCAVATION NEAR THE EXISTING STRUCTURES

  • Maruoka, Masao
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1990년도 PROCEEDINGS OF THE FIRST KOREA-JAPAN JOINT GEOTECHNICAL SEMINAR ON EXCAVATION and TUNNELING IN URBAN AREAS
    • /
    • pp.129-144
    • /
    • 1990
  • This paper is an introduction of measured samples of a peripheral ground displacement resulting from excavation work, and the work carried out to minimize the displacement of the earth retaining wall and the adjacent structures.

  • PDF

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

Performance of cold-formed steel wall frames under compression

  • Pan, Chi-Ling;Peng, Jui-Lin
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.407-420
    • /
    • 2005
  • This study presents the strength of braced and unbraced cold-formed steel wall frames consisting of several wall studs acting as columns, top and bottom tracks, and bracing members. The strength and the buckling mode of steel wall frames were found to be different due to the change of bracing type. In addition, the spacing of wall studs is a crucial factor to the strength of steel wall frames. The comparisons were made between the test results and the predictions computed based on AISI Code. The related specifications do not clearly provides the effective length factors for the member of cold-formed steel frame under compression. This paper proposes effective length factors for the steel wall frames based on the test results. A theoretical model is also derived to obtain the modulus of elastic support provided by the bracing at mid-height of steel wall frames in this research.

동적원심모형실험을 이용한 얕은 지반 굴착 버팀보 지지 흙막이 벽체의 지진토압 메커니즘 분석 (Mechanism of Seismic Earth Pressure on Braced Excavation Wall Installed in Shallow Soil Depth by Dynamic Centrifuge Model Tests)

  • 윤종석;박성진;한진태;김종관;김동찬;김두기;추연욱
    • 한국지진공학회논문집
    • /
    • 제27권5호
    • /
    • pp.193-202
    • /
    • 2023
  • In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.

Diagonal bracing of steel frames with multi-cable arrangements

  • Husem, Metin;Demir, Serhat;Park, Hong G.;Cosgun, Suleyman I.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1121-1137
    • /
    • 2016
  • A large number of structure in the world were build with poor seismic details, with or without any lateral load resisting system like concentrically braced frames and steel plate shear walls. These structures can reveal deteriorating hysteretic behaviors with stiffness and strength degradation. Therefore, seismic retrofitting of such structures for drift control has vital importance. In this study a retrofit methodology has been developed, which involves diagonal bracing of steel frames with different cable arrangements. In the experimental and numerical program 5 different lateral load resisting system were tested and results compared with each other. The results indicated that multi-cable arrangements suggested in this study showed stable ductile behavior without any sudden decrease in strength. Due to the usage of more than one diagonal cable, fracture of any cable did not significantly affect the overall strength and deformation capacity of the system. In cable braced systems damages concentrated in the boundary zones of the cables and beams. That is why boundary zone must have enough stiffness and strength to resist tension field action of cables.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

복합지반 굴착 시 기반암의 깊이와 절리경사에 따라 흙막이벽체에 작용하는 토압 (Earth Pressure on the Braced Wall in the Composite Ground Depending on the Depth and the Joint Dips of the Base Rocks under the Soil Strata)

  • 배상수;이상덕
    • 한국지반공학회논문집
    • /
    • 제32권10호
    • /
    • pp.41-53
    • /
    • 2016
  • 토사층 하부에 절리암반층이 존재하는 복합지반을 굴착하고 설치하는 흙막이 구조물의 안정성은 배면에 작용하는 토압에 의해 결정된다. 보통 복합지반에서는 암반층을 토사로 간주하고 암반층의 지반강도 정수를 적용하여 경험적으로 토압을 구하는데, 암반층의 불연속면을 고려하지 않기 때문에 대개 실제 작용 토압보다 작게 산정된다. 본 연구에서는 복합지반에서 토사층과 암반층의 구성비율 및 암반층의 절리경사에 따라 흙막이 벽체에 작용하는 토압의 크기와 분포형태를 규명고자 대형토조(높이 3.0m, 길이 3.0m 폭 0.5m)에서 축척 1/14.5로 2차원 대형 모형실험을 수행하고, 같은 조건으로 수치해석을 수행하였다. 실험지반은 토사층과 암반층의 분포비가 각각 65%:35%와 50%:50%가 되도록 조성하였고, 암반층의 절리는 굴착측으로 $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ 각도로 구성하였다. 그 결과 흙막이 벽체에 작용하는 토압은 암반층 절리 경사각(J)이 커질수록 증가 하였으며, 암반층비율이 증가함에 따라 암반층에 작용하는 토압도 증가하였다. 암반층에 작용하는 토압은 암반층의 비가 50%(R50)이고, 암반층의 절리 경사각이 $60^{\circ}$일 때 가장 크게 발생하였다. 대형모형실험과 수치해석 결과를 바탕으로 임의 복합지반을 굴착할 때 발생하는 토압을, 최상단 버팀대토압과 최대토압 및 굴착하단을 꼭짓점으로 하는 사각형분포로 이상화하고, 암반층비율과 절리경사각도를 고려하여 토압을 구할 수 있는 토압식을 제안하였다.