• Title/Summary/Keyword: Brace

Search Result 441, Processing Time 0.028 seconds

Experimental Structural Performance Evaluation of Precast-Buckling Restrained Brace Reinforced With Engineering Plastics (공업용 플라스틱으로 보강된 비좌굴가새의 실험적 구조성능평가)

  • Kim, Yu-Seong;Kim, Gee-Chul;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.43-52
    • /
    • 2020
  • In this study, the Buckling restrained braces reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. The proposed PC-BRB was fabricated to evaluate the reinforcement effect by carrying out a structural performance test and a full-scale two-layer frame test through cyclic loading test. As a result of PC-BRB's incremental and cyclic loading test, stable hysteresis behavior was achieved within the target displacement, and the compressive strength adjustment coefficient satisfied the recommendation. As a result of the real frame experiment, the strength of the reinforced specimen increased compared to the unreinforced specimen, and the ductility and energy dissipation increased.

A Study on the Sensitivity of Dynamic Behavior of Jacket Type Offshore Structure (자켓형 해양 구조물의 동적거동에 대한 민감도 연구)

  • Lee, Jung-Tak;Lee, Kang-Su;Shin, Sang-Hak;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.110-118
    • /
    • 2008
  • This thesis introduces a study conducted by ANSYS, Finite Element Analysis program, on dynamic behavior by thickness of a chord and a brace of a jacket typed marine structure. As load condition to work on offshore structures is getting much more various, it becomes more important to design the structures and operate them. In addition, stability is also required. As the result of this study, it was proved that wind and wave load gives more affection on frequency than on added mass in the Modal Analysis. Also, the chord and brace affect stiffness more than diagonal brace according to sensitivity analysis.

  • PDF

Behavior of Seismic Control system with Double Toggle Brace (이중 토글브레이스를 이용한 변위증폭 제진시스템의 이력특성)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.137-138
    • /
    • 2010
  • This paper presents new seismic control system that utilize toggle brace to amplify the displacement of damper. A full scale steel moment frame was constructed for the purpose of testing the energy dissipation system with double toggle brace.

  • PDF

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

Development of Tension Bracing for Energy Dissipation Capacity (에너지 소산 능력을 가진 인장가새 개발)

  • 최형준;엄승현;김원기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.349-356
    • /
    • 2002
  • Anticipating potential strong earthquakes, bracing dampers for better seismic performance are being developed in Korea, while similar ones are already developed in other countries. But, there are lack of relevant research on Slender Brace Dampers rather than hysteretic dampers, whose concept is also inappropriate for rehabilitation existed slender braced frame. For the development of Slender Brace Damper in slender braced frame, this research investigates Slender Brace Damper possessing various shapes of hyteretic damper through performing experimental test under cyclic loadings. As a result at this paper, Energy dissipation of test specimens (H35B20PS, H35B20TS, H20B60PS) are superior.

  • PDF

A study on optimized Blanking size of Brace Center Pillar using Inverse module in PAM-STAMP (PAM-STAMP Inverse 모듈을 이용한 Brace Center Pillar Blanking 사이즈 최적화에 관한 연구)

  • You S.R.;Kim T.H.;Park J.D.;Kim M.J.;Chang S.G.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.349-350
    • /
    • 2006
  • PAM-STAMP is a widely used program which deals with press forming analysis. A blanking used in the press process depends on the experience of the workers. Thus it causes some waste material and demands a lot of time and many costs at the manufacturing mold. So we need to optimize of the blanking size. We have studied the optimal blanking size of the Brace Center Pillar using an Inverse module in PAM-STAMP

  • PDF

Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces

  • Lee, Chang Seok;Sung, Min Soo;Han, Sang Whan;Jee, Hyun Woo
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1125-1138
    • /
    • 2018
  • During earthquakes, braces behave in complex manners because of the asymmetric response nature of their responses in tension and compression. Hollow structural sections (HSS) have been popularly used for braces due to their sectional efficiency in compression. The purpose of this study is to accurately simulate the cyclic behavior of rectangular HSS braces using a computationally efficient numerical model. A conceptually efficient and simple physical theory model is used as a basis model. To improve the accuracy of the model, cyclic beam growth and buckling load, as well as the incidences of local buckling and brace fracture are estimated using empirical equations obtained from regression analyses using test data on rectangular HSS braces. The accuracy of the proposed model is verified by comparing actual and simulated cyclic curves of brace specimens with various slenderness and width-to-thickness ratios.

Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior (비선형 거동을 하는 비좌굴가새의 유한요소모델 검증)

  • Kim, Dae-Hong;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.

An Analytical Study on the Performance of Buckling Restrained Brace Reinforced with Steel Plate (강판으로 보강된 비좌굴가새의 성능에 대한 해석적 연구)

  • Kim, Dae-Hong;Kim, Hyeok-Soo;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2022
  • In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.

Brace Position to Improve Survival from the Aircraft Accident (항공기 재난 생존성 제고를 위한 충격방지자세 검토)

  • Woo, Seungmoc
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.43-44
    • /
    • 2023
  • 항공기 사고시에 탑승객의 생존성을 제고하기 위한 방법으로 충돌/충격 전, 충격방지자세 Brace Position를 취하도록 하는 것이 전 세계 항공사의 공통적인 안전 매뉴얼이다. 해당 매뉴얼은 1980년대 미국 NTSB에서 항공기 사고를 조사하면서 생존 특성을 연구한 이후 처음 정형화 되었고 이후 현재까지 일반적으로 적용되고 있다. 그러나 허드슨강의 기적으로 불리는 2009년 1월 15일 US Airways 1549편의 비상착수 사고에서 항공기의 큰 구조적인 손상이 없었음에도 불구하고 탑승객 일부가 중상을 입는 결과를 초래하여 이를 계기로 기존의 충격방지자세 적절성을 재검토하여 개선하는 움직임이 있었다. 이에 관련 연구자료를 분석하여 국내 적용 방안을 살피고 또한 추가적인 개선방안을 제시하고자 한다.

  • PDF