• Title/Summary/Keyword: Br

Search Result 2,132, Processing Time 0.034 seconds

The Removal Characteristics of THM Formation Potential According to the Changes of Bromide Concentration of Influent Water in BAC Process (생물활성탄 공정에서 계절별 유입수의 $Br^-$ 농도변화에 따른 THM 생성능 구성종별 제거 특성)

  • Son, Hee-Jong;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.378-381
    • /
    • 2009
  • The purpose of this research is the evaluation of removal efficiency of THMFP in BAC. The changes of four types of THMFP and total THMFP were examined in the influent and effluent of BAC filter from March to December in 2008. It turned out that the amounts of brominated THMFP were obviously higher in winter and autumn compared to the spring and summer, which also resulted in an increase of the total-THMFP levels during winter and autumn. In addition, long-term running of BAC filter shows the good removal function of chloroform formation potential, but not brominated THMFP; with further bromination, this function was declined, as it shows the formation of bromoform in BAC filter during October and December. These results were caused by changing of the proportion of $Br^-$/DOC.

Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base

  • Kang, Sung Kwon;Yong, Soon Jung;Song, Young-Kwang;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3615-3620
    • /
    • 2013
  • Two novel copper(II) bromide complexes with pyridine containing Schiff base ligands, $Cu(pmed)Br_2$ and $Cu(pmed)Br_2$ where pmed = N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (pmed) and dpmed = N,N-diethyl-N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (dpmed) were synthesized and characterized using X-ray single crystal structure analysis, optical and magnetic susceptibility measurements. Crystal structural analysis of $Cu(pmed)Br_2$ showed that the copper(II) ion has a distorted square-pyramidal geometry with the trigonality index of ${\tau}=0.35$ and two intermolecular hydrogen bonds, which result in the formation of two dimensional networks in the ab plane. On the other hand, $Cu(pmed)Br_2$ displayed a near square-pyramidal geometry with the value of ${\tau}=0.06$. In both compounds, the NNN Schiff base and one Br atom occupy the basal plane, whereas the fifth apical position is occupied by the other Br atom at a greater Cu-Br apical distance. The reported complexes show $g_{\mid}$ > $g_{\perp}$ > 2.0023 with a $d_{x2-y2}$ ground state and a penta-coordinated square pyramidal geometry. Variable temperature magnetic susceptibility measurements showed that the developed copper(II) complexes follow the Curie-Weiss law, that is there are no magnetic interactions between the copper(II) ions since the Cu--Cu distance is too far for magnetic contact.

Nucleophilic Displacement at Sulfur Center (I). Halogen Exchange in Benzenesulfonyl Chlorides (유황의 친핵치환반응 (제1보) 염화 벤젠슬포닐의 할로겐 교환반응)

  • Jae Eui Lee;Ik Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.154-162
    • /
    • 1973
  • The rates and activation parameters for the halide $(Cl^{-}, Br^{-}, I^{-})$TeX> exchange reactions of substituted benzenesulfonyl-chloride, $XC_6H_4SO_2Cl$(X:p-MeO, H, p-Cl, p-Br, p-NO$_2l$) in dry acetone at two temperatures have been determined. It was found that the ion-pair of metal halide,$M^{+}X^{-}$, have negligible reactivity compared to free halide ions. It was also found that the nucleophilic order is $Cl^{-}>Br^{-}>I^{-}$for electron-donating substituent, and $Cl^{-}>I^{-}>Br^{-}$ for electron-withdrawing substituents. These results and convex nature of the Hammett plot are interpreted in the light of simple $S_N2$mechanism with the bond breaking becoming important for compounds with the electron withdra-wing substituents.

  • PDF

Analysis of Research Trends for BrIC Injury (BrIC 상해에 대한 경향 분석 및 고찰)

  • Lee, Kihwang;Kim, Kiseok;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.12-17
    • /
    • 2016
  • NHTSA (National Highway Traffic Safety Administration) has offered consumers the vehicle safety information on their car since 1978. NHTSA believes that they contribute auto makers to develop safer vehicle for customers, which will result in even lower numbers of deaths and injuries resulting from motor vehicle crashes. NHTSA has been studied why people are still dying in frontal test despite of the use of many restraints system and they understand that current test does not reflect real world crash data such as oblique and corner impact test. As a result, NHTSA announced that a new test method will be introduced to use of enhanced biofidelic dummy and new crash avoidance technology evaluation from 2019. New and refined injury criteria will be applied to Head / Neck / Chest / Lower Leg. BrIC(Brain Injury Criterion)value in NHTSA test results using THOR dummy from 2014 to 2015 was average 0.91 and 1.24 in driver and passenger dummies. IIHS 64kph SOF test is the most likely to new frontal oblique test in an aspect of offset impact which is being studied by NHTSA. In this paper, we focused on head injury, especially brain injury - BrIC and conducted IIHS 64kph SOF (Small Offset Front) test with Hybrid III dummy to evaluate the injury for BrIC. Based on the test results, these data can be predicted BrIC level and US NCAP rating with current vehicle.

Synthesis and Crystal Structure of 1-(dimethylbromotin)-2-[(methoxyl)methly]-o-carborane $(C_{16}H_{21}B_{10}BrOSn)$ (1-(Dimethylbromotin)-2-[(methoxyl) methly]-o-carborane $(C_{16}H_{21}B_{10}BrOSn)$의 합성 및 결정 구조)

  • Cho Sung Il;Kang Sang Ook;Chang K.
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.88-92
    • /
    • 2004
  • An organometallic compound, $(C_{16}H_{21}B_{10}BrOSn)$, was synthesized from o-carborane, closo-1-[(methoxyl)methyl]-o-carborane $(HCab^o)$, and $SnMe_2Br_2$. The molecular structure of this complex has been determined by X-ray diffraction. Crystallographic data: orthorhombic, space group Pna2, a = 17.9292(15)$\AA$, b= 7.2066(4)$\AA$, c=13.0582(10)$\AA$, Z=4, V=1687.2(2) $\AA^3$. The structure was solved by direct methods and refined by full-matrix least-squares methods to give a model with a reliability factor R=0.0574 for 1724 reflections.

The Expression of a Cytosolic Fructose-1,6-Bisphosphatase, a Key Enzyme in Sucrose Biosynthesis, Gene was Diurnally Fluctuated and Increased in Cold Acclimated Leaves of Chinese Cabbage

  • Leen, Jeong-Yeo;Song, Ha-Young;Lim, Yong-Pyo;Hur, Yoon-Kang
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2006
  • Chinese cabbage (Brassica rapa ssp. pekinesis) is one of the most important vegetable crops in korea and other East Asian countries. Cytosolic fructose-1,6-bisphospha-tase (cytFBPase) is a key enzyme in sucrose biosyn-thesis, which controls the sucrose levels as well as the productivity at plants. The Chinese cabbage cytFBPase gene, BrFBPase, encodes the 340 amino acid polypep-tide, giving a theoretical molecular weight of 37.2 kD and a isolectric point of 5.4. BrFBPase showed high sequence identity with Brassica homologs and its functional domains, such as 12,6P$_2$ binding site or active site and F6P binding site, were highly conserved in diverse sources of organisms. Although the genome of Chinese cabbage seemed to be triplicated, BrFBPase appears to be a single copy gene. The expression of BrFBPase was examined at transcript and protein levels under various conditions. BrFBPase expression was observed only in photosynthetic source tissue, not in sink tissue. The expression was slightly higher during the day than at night, and it showed a diurnal cycle with circadian rhythmicity. Short-term exposure to low temperature inhibited the expression of the BrFBPase, while long-term exposure increased the expression, supporting that sugar levels are high in late autumn when temperature are low.

Antioxidant and Neuroprotective Effects of Perilla frutescens var. japonica Leaves (들깨 잎 추출물의 항산화 및 신경세포 보호작용)

  • Lee, Jong-Im;Jin, Chang-Bae;Ryu, Jae-Ha;Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The leaves of Perilla frutescens Britt. var. japonica Hara (Labiatae) are often used in gourmet food in several Asian countries. Two kinds of perilla cultivars, Namcheon (NC) and Bora (BR), have been respectively developed in Korea by the pure line of 'deulkkae' from the local variety and by the cross of 'deulkkae' and 'chajogi'. The present study evaluated and compared antioxidant and neuroprotective effects of the fractions prepared from the leaves of the two cultivars using cell-free bioassay systems and primary cultured rat cortical cells. We found that the spirit, chloroform, hexane and butanol fractions from NC and BR leaves inhibited lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In contrast, only the spirit and butanol fractions from both cultivars exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among the fractions tested, the butanol fractions from NC and BR leaves exhibited the most potent antioxidant properties, and the butanol fraction from BR was more potent than the NC fraction. In consistence with these findings, the butanol fractions from both cultivars protected primary cultured cortical cells from the oxidative damage induced by $H_2O_2$ or xanthine and xanthine oxidase, with the BR butanol fraction being more active. The butanol fractions from NC and BR did not produce cytotoxicity in our cultures treated for 24 h at the concentrations of up to $100\;{\mu}g/ml$. Taken together, these results indicate that the leaves of the two cultivars of Perilla frutescens exert antioxidant and neuroprotective effects, and that the butanol fraction from BR leaves exhibits the most potent antioxidative neuroprotection among the fractions tested in this study.

Preparation of Novel Ionic Liquids and Their Applications in Brominating Reaction (새로운 이온용액의 제조 및 브롬화반응 응용)

  • Li, Hua;Liu, Juan;Zhu, Jiang;Wang, Hongkai
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.685-690
    • /
    • 2011
  • Novel acidic ionic liquids, 1-(${\omega}$-sulfonicacid)propyl-3-methylimidazolium bromide ([$HSO_3$pmim]Br)and 1-(${\omega}$-sulfonicacid)butyl-3-methylimidazolium bromide ([$HSO_3$bmim]Br), were prepared and used as brominating agents, catalysts and solvents in the synthesis of 1,7-dibromoheptane, respectively. 1,7-dibromoheptan with a yield of 95% was obtained at $100^{\circ}C$ for 2 h by simple phase separation. The acidic ionic liquid [$HSO_3$pmim]Br was recycled for 5 times and the yield of 1,7-dibromoheptane did not decrease remarkably, which indicates that catalysts still maintain good selectivity and activity after recycling. The structure of the acidic ionic liquid [$HSO_3$pmim]Br was characterized with IR, and it was found that [$HSO_3$pmim]Br had stronger acidity than other ionic liquid.

Optical Properties of Sn-doped CH3NH3PbBr3 Perovskite Nanoparticles (Sn 첨가에 따른 CH3NH3PbBr3 페로브스카이트 나노입자의 광학적 특성)

  • Sihn, Moon Ryul;Jeon, Mingi;Park, Hyerin;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Methylammonium lead bromide ($MAPbBr_3$) has attracted a lot of attention due to their excellent optoelectronic properties such as the compositional flexibility relevant to photoluminescence (PL) and UV-Vis absorbance spectrum, high diffusion length, and photoluminescence quantum yield (PLQY). Despite such advantages of organic-inorganic perovskite materials, more systematic study on manipulation of their optoelectronic properties in homo- or heterovalent metal ions doped halide perovskite nanocrystals is lacking. In this study, we systematically investigated the optical properties of colloidal $CH_3NH_3Pb_{1-x}Sn_xCl_{2x}Br_{3-2x}$ particles by addition of $SnCl_2$ into the typical methylammonium lead tribromide ($CH_3NH_3PbBr_3$) precursor solution. We found that only 1% addition of $SnCl_2$ shows a significant blue-shift from 540 nm to 420 nm in UV-Vis absorbance spectrum due to the strong quantum confinement effect. Furthermore, continuous blue-shift in photoluminescence spectra was observed as the amount of Cl increases. These experimental results provide new insights into the replacement of Pb within $MAPbBr_3$, required for the broadening of their application.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.