• Title/Summary/Keyword: Box-Jenkins time series model

Search Result 35, Processing Time 0.026 seconds

Time series Analysis of State-space Model and Multiplication ARIMA Model in Dissolved Oxygen Simulation (용존산소 농도모의시 상태공간모형과 승법 ARIMA모형의 시계열 분석)

  • 이원호;서인석;한양수
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2000
  • The purpose of this study is to develop the stochastic stream water quality model for the intake station of Chung-Ju city waterworks in the Han river system. This model was based on the theory of Box-Jenkins Multiplicative ARIMA(SARIMA) and the state space model to simulate changes of water qualities. Variable of water qualities included in the model are temperature and dissolved oxygen(DO). The models development were based on the data obtained from Jan. 1990 to Dec. 1997 and followed the typical procedures of the Box-Jenkins method including identification and estimation. The seasonality of DO and temperature data to formulate for the SARIMA model are conspicuous and the period of revolution was twelve months. Both models had seasonality of twelve months and were formulates as SARIMA {TEX}$(2,1,1)(1,1,1)_{12}${/TEX} for DO and temperature. The models were validated by testing normality and independency of the residuals. The prediction ability of SARIMA model and state space model were tested using the data collected from Jan. 1998 to Oct. 1999. There were good agreements between the model predictions and the field measurements. The performance of the SARIMA model and state space model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the state space model lead to the improved accuracy.

  • PDF

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF

A Model for Groundwater Time-series from the Well Field of Riverbank Filtration (강변여과 취수정 주변 지하수위를 위한 시계열 모형)

  • Lee, Sang-Il;Lee, Sang-Ki;Hamm, Se-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.673-680
    • /
    • 2009
  • Alternatives to conventional water resources are being sought due to the scarcity and the poor quality of surface water. Riverbank filtration (RBF) is one of them and considered as a promising source of water supply in some cities. Changwon City has started RBF in 2001 and field data have been accumulated. This study is to develop a time-series model for groundwater level data collected from the pumping area of RBF. The site is Daesan-myeon, Changwon City, where groundwater level data have been measured for the last five years (Jan. 2003$\sim$Dec. 2007). Minute-based groundwater levels was averaged out to monthly data to see the long-term behavior. Time-series analysis was conducted according to the Box-Jenkins method. The resulted model turned out to be a seasonal ARIMA model, and its forecasting performance was satisfactory. We believe this study will provide a prototype for other riverbank filtration sites where the predictability of groundwater level is essential for the reliable supply of water.

Using Different Method for petroleum Consumption Forecasting, Case Study: Tehran

  • Varahrami, Vida
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • Purpose: Forecasting of petroleum consumption is useful in planning and management of petroleum production and control of air pollution. Research Design, Data and Methodology: ARMA models, sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology usually used to estimate them, are typically applied to auto correlated time series data. Results: Petroleum consumption modeling plays a role key in big urban air pollution planning and management. In this study three models as, MLFF, MLFF with GARCH (1,1) and ARMA(1,1), have been investigated to model the petroleum consumption forecasts. Certain standard statistical parameters were used to evaluate the performance of the models developed in this study. Based upon the results obtained in this study and the consequent comparative analysis, it has been found that the MLFF with GARCH (1,1) have better forecasting results.. Conclusions: Survey of data reveals that deposit of government policies in recent yeas, petroleum consumption rises in Tehran and unfortunately more petroleum use causes to air pollution and bad environmental problems.

Data Analysis and Mining for Fish Growth Data in Fish-Farms (양식장 어류 생육 데이터 분석 및 마이닝)

  • Seoung-Bin Ye;Jeong-Seon Park;Soon-Hee Han;Hyi-Thaek Ceong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.127-142
    • /
    • 2023
  • The management of size and weight, which are the growth information of aquaculture fish in fish-farms, is the most basic goal. In this study, the epoch is defined in fish-farms from the time of stocking or dividing to the time of shipment, and the growth data for a total of three epoch is analyzed from a time series perspective. Growth information such as the size and weight of aquaculture fish that occur over time in fish-farms is compared and analyzed with water quality environmental information and feeding information, and a model is presented using the analysis results. In this study, linear, exponential, and logarithmic regression models are presented using the Box-Jenkins method for size and weight by epoch using data obtained in the field.

Recursive Short-Term Load Forecasting Using Kalman Filter and Time Series (칼만 필터와 시계열을 이용한 순환단기 부하예측)

  • 박영문;정정주
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.191-198
    • /
    • 1983
  • This paper describes the aplication of different model which can be used for short-term load prediction. The model is based on Bohlin's approach to first develop a load profile model representing the nominal load component and the Box-Jenkins approach is used to predict residuals. An on-line algorithm using Kalman Filter and Time Series is implemented for and hour-ahead prediction. In the Kalman Filter system equation and measurement equation were fixed and parameters of Time Series were varied week after week. A set of data for Korea Electric Power Corporation from April to June 1981 was used for the evaluation of the model. As the result of this simulation 1.2% rms error was acquired.

  • PDF

Development of a neural-based model for forecating link travel times (신경망 이론에 의한 링크 통행시간 예측모형의 개발)

  • 박병규;노정현;정하욱
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.1
    • /
    • pp.95-110
    • /
    • 1995
  • n this research neural -based model was developed to forecast link travel times , And it is also compared wiht other time series forecasting models such as Box-Jenkins model, Kalman filter model. These models are validated to evaluate the accuracy of models with real time series data gathered by the license plate method. Neural network's convergency and generalization were investigated by modifying learning rate, momentum term and the number of hidden layer units. Through this experiment, the optimum configuration of the nerual network architecture was determined. Optimumlearining rate, momentum term and the number of hidden layer units hsow 0.3, 0.5, 13 respectively. It may be applied to DRGS(dynamic route guidance system) with a minor modification. The methods are suggested at the condlusion of this paper, And there is no doubt that this neural -based model can be applied to many other itme series forecating problem such as populationforecasting vehicel volume forecasting et .

  • PDF

BIM-BASED TIME SERIES COST MODEL FOR BUILDING PROJECTS: FOCUSING ON MATERIAL PRICES

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.1-6
    • /
    • 2011
  • As large-scale building projects have recently increased for the residential, commercial and office facilities, construction costs for these projects have become a matter of great concern, due to their significant construction cost implications, as well as unpredictable market conditions and fluctuations in the rate of inflation during the projects' long-term construction periods. In particular, recent volatile fluctuations of construction material prices fueled such problems as cost forecasting. This research develops a time series model using the Box-Jenkins approach and material price time series data in Korea in order to forecast trends in the unit prices of required materials. Building information modeling (BIM) approaches are also used to analyze injection times of construction resources and to conduct quantity take-off so that total material prices can be forecast. To determine an optimal time series model for forecasting price trends, comparative analysis of predictability of tentative autoregressive integrated moving average (ARIMA) models is conducted. The proposed BIM-based time series forecasting model can help to deal with sudden changes in economic conditions by estimating material prices that correspond to resource injection times.

  • PDF

INNOVATION ALGORITHM IN ARMA PROCESS

  • Sreenivasan, M.;Sumathi, K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.373-382
    • /
    • 1998
  • Most of the works in Time Series Analysis are based on the Auto Regressive Integrated Moving Average (ARIMA) models presented by Box and Jeckins(1976). If the data exhibits no ap-parent deviation from stationarity and if it has rapidly decreasing autocorrelation function then a suitable ARIMA(p,q) model is fit to the given data. Selection of the orders of p and q is one of the crucial steps in Time Series Analysis. Most of the methods to determine p and q are based on the autocorrelation function and partial autocor-relation function as suggested by Box and Jenkins (1976). many new techniques have emerged in the literature and it is found that most of them are over very little use in determining the orders of p and q when both of them are non-zero. The Durbin-Levinson algorithm and Innovation algorithm (Brockwell and Davis 1987) are used as recur-sive methods for computing best linear predictors in an ARMA(p,q)model. These algorithms are modified to yield an effective method for ARMA model identification so that the values of order p and q can be determined from them. The new method is developed and its validity and usefulness is illustrated by many theoretical examples. This method can also be applied to an real world data.

Estiamtion of Time Series Model on Forest Fire Occurrences and Burned Area from 1970 to 2005 (1970-2005년 동안의 산불 발생건수 및 연소면적에 대한 시계열모형 추정)

  • Lee, Byungdoo;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.643-648
    • /
    • 2006
  • It is important to understand the patterns of forest fire in terms of effective prevention and suppression activities. In this study, the monthly forest fire occurrences and their burned areas were investigated to enhance the understanding of the patterns of forest fire in Korea. The statistics of forest fires in Korea, 1970 through 2005, built by Korea Forest Service was analyzed by using time series analysis technique to fit ARIMA models proposed by Box-Jenkins. The monthly differences in forest fire characteristics were clearly distinguished, with 59% of total forest fire occurrences and 72% of total burned area being in March and April. ARIMA(1, 0, 1) was the best fitted model to both the fire accurrences and the burned area time series. The fire time series have a strong relation to the fire occurrences and the burned area of 1 month and 12 months before.